首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Poly-ADP-ribosylation in health and disease   总被引:3,自引:0,他引:3  
  相似文献   

4.
5.
6.
7.
8.
9.
Poly-ADP-ribosylation in health and disease   总被引:4,自引:0,他引:4  
  相似文献   

10.
Poly(ADP-ribosyl)ation is required by multicellular eukaryotes to ensure genomic integrity under conditions of mild to moderate genotoxic stress. However, severe stress following acute neuronal injury causes overactivation of poly(ADP-ribose) polymerase-1, which results in unregulated poly(ADP-ribose) (PAR) synthesis and widespread neuronal cell death. Once thought to be a necrotic cell death resulting from energy failure, PARP-1 activation is now known to induce the nuclear translocation of apoptosis-inducing factor, which results in caspase-independent cell death. Conversely, poly(ADP-ribose) glycohydrolase, once thought to contribute to neuronal injury, now appears to have a protective role as demonstrated by recent studies utilizing gene disruption technology. Thus, the emerging mechanism dictating the fate of neurons appears to involve the regulation of PAR levels in neurons. Therefore, therapies targeting poly(ADP-ribosyl)ation in the treatment of neurodegenerative conditions such as stroke and Parkinson's disease are required to inhibit PAR synthesis and/or facilitate its degradation.  相似文献   

11.
12.
Biological functions of the ING family tumor suppressors   总被引:11,自引:0,他引:11  
  相似文献   

13.
Cyclin-dependent kinase 5 (Cdk5) has been identified as a determinant of sensitivity to poly(ADP-ribose) polymerase (PARP) inhibitors. Here, the consequences of its depletion on cell survival, PARP activity, the recruitment of base excision repair (BER) proteins to DNA damage sites, and overall DNA single-strand break (SSB) repair were investigated using isogenic HeLa stably depleted (KD) and Control cell lines. Synthetic lethality achieved by disrupting PARP activity in Cdk5-deficient cells was confirmed, and the Cdk5KD cells were also found to be sensitive to the killing effects of ionizing radiation (IR) but not methyl methanesulfonate or neocarzinostatin. The recruitment profiles of GFP-PARP-1 and XRCC1-YFP to sites of micro-irradiated Cdk5KD cells were slower and reached lower maximum values, while the profile of GFP-PCNA recruitment was faster and attained higher maximum values compared to Control cells. Higher basal, IR, and hydrogen peroxide-induced polymer levels were observed in Cdk5KD compared to Control cells. Recruitment of GFP-PARP-1 in which serines 782, 785, and 786, potential Cdk5 phosphorylation targets, were mutated to alanines in micro-irradiated Control cells was also reduced. We hypothesize that Cdk5-dependent PARP-1 phosphorylation on one or more of these serines results in an attenuation of its ribosylating activity facilitating persistence at DNA damage sites. Despite these deficiencies, Cdk5KD cells are able to effectively repair SSBs probably via the long patch BER pathway, suggesting that the enhanced radiation sensitivity of Cdk5KD cells is due to a role of Cdk5 in other pathways or the altered polymer levels.  相似文献   

14.
15.
The acquisition of an appropriate set of chemical modifications is required in order to establish correct structure of RNA molecules, and essential for their function. Modification of RNA bases affects RNA maturation, RNA processing, RNA quality control, and protein translation. Some RNA modifications are directly involved in the regulation of these processes. RNA epigenetics is emerging as a mechanism to achieve dynamic regulation of RNA function. Other modifications may prevent or be a signal for degradation. All types of RNA species are subject to processing or degradation, and numerous cellular mechanisms are involved. Unexpectedly, several studies during the last decade have established a connection between DNA and RNA surveillance mechanisms in eukaryotes. Several proteins that respond to DNA damage, either to process or to signal the presence of damaged DNA, have been shown to participate in RNA quality control, turnover or processing. Some enzymes that repair DNA damage may also process modified RNA substrates. In this review, we give an overview of the DNA repair proteins that function in RNA metabolism. We also discuss the roles of two base excision repair enzymes, SMUG1 and APE1, in RNA quality control.  相似文献   

16.
17.
Poly(ADP-ribose) (PAR) has been identified as a DNA damage-inducible cell death signal upstream of apoptosis-inducing factor (AIF). PAR causes the translocation of AIF from mitochondria to the nucleus and triggers cell death. In living cells, PAR molecules are subject to dynamic changes pending on internal and external stress factors. Using RNA interference (RNAi), we determined the roles of poly(ADP-ribose) polymerases-1 and -2 (PARP-1, PARP-2) and poly(ADP-ribose) glycohydrolase (PARG), the key enzymes configuring PAR molecules, in cell death induced by an alkylating agent. We found that PARP-1, but not PARP-2 and PARG, contributed to alkylation-induced cell death. Likewise, AIF translocation was only affected by PARP-1. PARP-1 seems to play a major role configuring PAR as a death signal involving AIF translocation regardless of the death pathway involved. Received 7 November 2007; received after revision 19 December 2007; accepted 21 December 2007 O. Cohausz, C. Blenn: These two authors contributed equally to this work.  相似文献   

18.
19.
20.
Programmed necrosis is important in many (patho)physiological settings. For specific therapeutic intervention, however, a better knowledge is required whether necrosis occurs through one single “core program” or through several independent pathways. Previously, the poly(ADP-ribose) polymerase (PARP) pathway has been suggested as a crucial element of tumor necrosis factor (TNF)-mediated necroptosis. Here, we show that TNF-induced necroptosis and the PARP pathway represent distinct and independent routes to programmed necrosis. First, DNA-alkylating agents such as 1-methyl-3-nitro-1-nitrosoguanidine (MNNG) or methyl methanesulfonate rapidly activate the PARP pathway, whereas this is a late and secondary event in TNF-induced necroptosis. Second, inhibition of the PARP pathway does not protect against TNF-induced necroptosis, e.g., the PARP-1 inhibitor 3-AB prevented MNNG- but not TNF-induced adenosine-5′-triposphate depletion, translocation of apoptosis-inducing factor, and necrosis. Likewise, olaparib, a more potent and selective PARP-1 inhibitor failed to block TNF-induced necroptosis, identical to knockdown/knockout of PARP-1, pharmacologic and genetic interference with c-Jun N-terminal kinases and calpain/cathepsin proteases as further components of the PARP pathway. Third, interruption of TNF-induced necroptosis by interference with ceramide generation, RIP1 or RIP3 function or by the radical scavenger butylated hydroxyanisole did not prevent programmed necrosis through the PARP pathway. In summary, our results suggest that the currently established role of the PARP pathway in TNF-induced necroptosis needs to be revised, with consequences for the design of future therapeutic strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号