首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
地源热泵运行中地埋管换热器与岩土层的热交换是一个复杂的热湿耦合传热传质过程。为研究岩溶地区地源热泵运行过程中土体热湿迁移效应及其对系统性能的影响规律,结合岩溶地区地质条件和实验功能需求,设计研制了一个可进行地源热泵运行性能测试及地埋管周围土壤热湿迁移效应研究的实验平台;该实验平台主要分为地源热泵试验系统、运行监控和数据采集系统,实现了地源热泵运行状况和换热过程中岩土体温湿度变化、土壤热湿迁移、周围环境大气因素的自动采集和实时监测;在此基础上,利用地源热泵运行过程中的实测数据验证了实验平台的有效性,并对部分实测数据进行简单分析和讨论。运行结果表明:该实验平台具有高效、节能等优点,实现了数据自动采集和全面监测功能,完全符合实验需求。  相似文献   

2.
通过数值模拟与现场实测地温的变化,研究了水泥水化热对地埋管周围地温的影响;通过理论分析、现场实测地埋管换热能力以及数值模拟研究了地埋管周围地温变化对地埋管夏季工况换热效果的影响.对上海自然博物馆地埋管系统的研究表明:在地源热泵投入使用时,地下室底板以下约10m处的地温受水泥水化热影响最大,距离地下连续墙2.85m处地温的平均升高为2.2℃;地埋管夏季工况的换热量随初始地温的升高而线性减小,地埋管周围地温每升高1℃,将使地埋管夏季工况的换热量减小5%以上;地源热泵系统由夏季工况作为首次投入使用时应对距离地下连续墙13m以内地埋管采取相应措施,以保证换热系统高效运行.  相似文献   

3.
地源热泵运行中地埋管换热器与岩土层的热交换必然引起地埋管周围温度场的变化。借助岩溶地区地源热泵系统实验平台,开展夏季制冷工况下两种不同运行模式的实验,探讨地埋管周围温度场的变化规律及其对地源热泵性能的影响。实验研究结果表明:1横、竖地埋管管壁温度的变化规律基本上一致,但其管壁温升幅度有所差异,竖埋管管壁的温升幅度(间歇工况3.7℃,连续工况3.2℃)均较横埋管(间歇工况0.9℃,连续工况0.7℃)要大;2横、竖地埋管周围土壤温升幅度跟距离地埋管的远近有关,随着距离的增加,其温升的幅度递减;31.0 m以上地层土壤温度变化受气候环境变化的影响,从而影响了埋深较浅的横埋管。而埋深较大的竖埋管受岩溶地下水渗流的影响;4系统回水温度对热泵机组性能系数COP有显著影响,间歇运行模式下的热泵机组性能系数COP对系统回水温度的变化更加敏感。  相似文献   

4.
以长沙地区宾馆建筑为例,建立制冷、制热和制热水的多功能地源热泵系统模型,对多功能地源热泵系统全年运行的技术经济性能进行研究.分析多功能地源热泵系统地埋管换热器周围土壤热平衡性和系统全年能耗特点,并与传统的空气源热泵加电热水器系统进行能耗及全生命周期经济性比较.研究结果表明,与常规的地源热泵系统相比,应用多功能地源热泵系统可明显改善地下土壤全年释热量与吸热量的平衡性,运行10 a后土壤温度比相同地埋管长度的常规地源热泵系统减少3.9℃;夏热冬冷地区的多功能地源热泵系统夏季的总能耗最高,冬季次之,春秋季最低;与空气源热泵加电热水器系统相比,多功能地源热泵系统总能耗可节省46%,生命周期内的费用现值节约率变化范围为7%~40%,投资回收期变化范围为5~12 a.  相似文献   

5.
基于地源热泵单U地埋管二维换热模型,以钻孔内的换热热阻为目标函数,以回填材料导热系数、两埋管间距及管内水流速等参数为优化变量,利用添加了精英保留及迁移优化的遗传算法,对各参数同时变化时进行了目标函数优化,并分析了各参数对热阻性能影响,当回填材料导热系数、两埋管间距及流速均为最大值时,其对应的钻孔内换热热阻达到最小.研究结果对优化地埋侧换热器的设计具有一定参考价值.  相似文献   

6.
马健  张吉炎  郑中援 《科技信息》2011,(24):340-341
土壤源热泵是地源热泵中最常见的应用形式,是高效节能、绿色环保的供暖和制冷方式。其换热器大都采用竖直U形地埋管。据此,我建立了竖直U形地埋管与土壤的三维传热模型,模拟了U形管内流体的传热、U形管与土壤的传热和土壤的温度场。本文所建的模型考虑了U形管的实际形状,采用GAMBIT为建模软件,FLUENT为计算软件。管内流动状况与实际物理、几何条件完全符合,这与以前研究者将U形管两只管腿等效为柱热源的数学模型相比有质的改进。通过分析这些模拟数据可以得出对土壤源热泵工程设计有指导作用的结果。  相似文献   

7.
对于采用地源热泵系统的以冷负荷为主的商业性建筑,因夏季冷负荷大于冬季热负荷,地下埋管年排热量大于年吸热量,若完全依靠地源热泵来供冷,则会造成埋管换热器换热能力下降和热泵机组的初投资比较高,热泵系统的循环效率也会降低。采用辅助冷却复合地源热泵系统,可有效降低系统投资,提高系统的运行节能效果。本文对复合地源热泵垂直理管换热器的换热能力进行研究以及周围土壤温度的变化进行分析。  相似文献   

8.
基于有限元法的垂直地埋管换热器传热研究   总被引:1,自引:1,他引:0  
根据能量守恒原理,对地埋管换热器建立二维传热模型.运用Ansys热分析软件,采用热传导的有限元瞬态分析方法,对地源热泵垂直埋管与回填材料及岩土间的传热进行数值模拟与分析.根据合肥地区某住宅的地源热泵工程的相关设计资料,分析了垂直埋管在岩土中传热的温度场及温度梯度场的影响大小及范围,对地埋管在1个周期运行后对岩土体的温度恢复情况的影响进行了数值分析,结果表明:对于地处夏热冬冷的合肥地区,较适宜应用地源热泵系统,岩土温度的自平衡性较好.  相似文献   

9.
地源热泵夏季运行地温场变化特性试验研究   总被引:1,自引:0,他引:1  
以同济大学某实验室地埋管地源热泵工程为例,通过对地埋管换热区地温场及地源热泵系统运行参数进行监测,分析研究了地源热泵系统夏季运行地温场的变化特性以及地温场变化对地源热泵系统运行效率的影响.结果表明:夏季累计运行44 d,土壤平均升温幅度为0.64℃;不同深度测点温度变化幅度随深度增加逐渐减小,120 m深度地温几乎无变化;换热区土壤地温恢复速率为0.14℃·100 d~(-1);随着换热区土壤温度的升高,地源侧进出水温差降低幅度为0.87℃,机组性能系数亦随之降低,系统换热效率下降.  相似文献   

10.
埋地管线-土体相互作用分析计算区域的选取   总被引:2,自引:0,他引:2  
将埋地管线及周围土体从半无限地球介质中共同取出,建立了管土相互作用分析模型,采用有限元技术分析地面永久变形下埋地管线与周围土体的反应和相互影响,以确定有限元分析中计算区域的范围.管道及其周围土体分别以空间薄壳单元和实体单元进行离散,采用非线性接触单元模拟管土之间的滑移、分离及闭合现象.考虑了初始应力场的影响,对有限元模型的有效计算区域问题进行了数值分析,给出了管土界面分离及滑移情况,得到了有效计算区域与位错量、管径、埋深及土体刚度的关系.  相似文献   

11.
为研究双U型地埋管换热器对泥岩温度场的影响,以南宁某地源热泵工程为依托,通过现场原位观测,获得与换热器不同距离处泥岩层随着地源热泵机组运行两年内的温度变化情况。数据显示,泥岩层每年的温度在机组运行期间下降,停运期间回升;长期来看,泥岩层的温度值逐年降低,距离地埋管换热器越远的泥岩层温度恢复能力越强且温度降幅越小。运用ABAQUS进行数值模拟并与实测值对比分析,结果与实测数据显示的温度变化规律一致,模拟机组长期运行后泥岩温度场的变化情况,发现存在半径为7 m的"温度陡变区",且机组运行5 a后土体温度趋于稳定。  相似文献   

12.
目的根据地源热泵不同运行模式下对地埋管换热器周围土壤产生不同影响,研究其周围温度场的变化规律.方法运用模拟软件TRNSYS对某办公楼建筑全年逐时负荷进行计算,并进行地源热泵的设计,然后模拟地源热泵冬夏两季、只冬季、只夏季运行后后土壤温度的变化.结果地源热泵冬夏两季运行1年、5年后土壤温度分别为9.272℃、8.315℃;地源热泵只夏季运行1年、5年后土壤温度分别为11.02℃、12.95℃;地源热泵只冬季运行1年、5年后土壤温度分别为8.929℃、7.552℃.结论地源热泵冬夏两季运行比单季运行时,土壤温度的变化幅度较小,且最终温度更接近土壤初始温度,更有利于地源热泵的长期运行.  相似文献   

13.
软土地基水泥土搅拌桩施工扰动情况现场测试及分析   总被引:2,自引:0,他引:2  
王道华 《河南科学》2014,(8):1520-1523
基于某软土路基水泥土搅拌桩加固工程,设计并进行现场试验来研究水泥土搅拌桩施工过程中对周围土体的影响,测量了施工过程中,周围土体中孔隙水压力和土体位移的变化情况.结果表明:水泥土搅拌桩周围土体的扰动情况与离桩距离、桩到达深度有关;大面积水泥土搅拌桩施工时,孔隙水压力和土体位移都会不断累积增加;泥土搅拌桩由近及远施工比由远及近施工,对周围土体的扰动小;得到最大孔隙水压力增量与打桩点距离之间的拟合关系式.上述结论为软土地区的水泥土搅拌桩的设计和施工优化提供了指导性的意见.  相似文献   

14.
地埋管地源热泵以浅层地热能资源作为供冷冷源和供热热源,是建筑节能领域内最高效的技术之一。近年来地埋管地源热泵技术在河北省发展尤为迅速,但也出现了诸多问题。地埋管地源热泵的适宜性研究得到越来越多人的重视。本文通过对河北地区(主要是京津以南河北地区)地质构造以及水文条件的勘察了解,运用河北省地源热泵检测中心与河北省科学院能源研究所联合开发的的岩土热响应测试仪,对该地区做了大量的热响应试验测试,积累了丰富的数据资料。利用二维线热源传热模型采用"恒功率"和"恒温法"对测试项目的岩土导热系数和单位埋深的换热量做了相应的求解计算,结合地质构造从经济性和换热效率两方面综合考虑对地埋管地源热泵在河北地区的适宜性进行了一定的划分,得到并不是所有的地方都适合做地埋管地源热泵项目。研究旨在为河北地区地热能的开发与利用起到一定的推动作用,为河北省地埋管地源热泵热泵的设计、施工等方面提供一定的参考。  相似文献   

15.
为探讨地源热泵系统垂直埋管换热器运行对地表温度的影响,采用数值模拟的方法,基于一定的覆土厚度,结合不同工况下的埋管负荷,建立了地下土壤、钻孔、覆土与外界环境之间的传热模型,对埋管运行期覆土层温度场的变化进行了分析,并对地表温度随覆土厚度的变化规律进行了研究。结果表明,在地埋管的连续换热作用下,埋管周围土壤温度显著变化,且越接近钻孔中心,温度变化幅度越大;钻孔顶部覆土层温度局部变化,随着覆土厚度增加,温差递减;地表温度变化范围及上升幅度与埋管换热量成正比,与覆土厚度成反比;增加覆土层厚度能有效减缓地埋管换热对地表温度造成的热影响,有利于管群区域的红外伪装。  相似文献   

16.
为了探究地震动在浅埋隧道场地中的传播特性,以南京某工程中浅埋隧道为研究案例进行振动台试验。基于Bockinghamπ定理分别对结构和地基土作相似缩比,考虑时间效应对土体的影响,时间相似比采用模型土时间相似比,采用叠层剪切土箱来减小边界效应,对试验得到的加速度结果进行分析,结果表明:随着埋深减小,土体的加速度峰值逐渐增大;地震中,地下结构主要随周围土体一起运动;结构的存在会放大周围一定范围的土体加速度峰值。  相似文献   

17.
为保证输气管道在滑坡灾害下能够安全运行,需对输气管道滑坡灾害进行影响因素敏感性分析,以识别出管道应力与影响因素之间的敏感状况.利用ABAQUS有限元软件建立输气管道滑坡灾害数值分析模型,计算出管道的最大Mises应力值;应用敏感性系数分析法分析了输气管道滑坡灾害的主要影响因素,得出主要影响因素与管道应力之间的变化规律.计算结果表明,管道在横穿滑坡区域时,除管道壁厚与管道应力呈反向变化关系外,滑坡宽度、内摩擦角度、土体黏聚力、管道埋深和管内压力都与管道应力呈正向变化关系;管道壁厚为影响管道应力的关键因素,其余各因素敏感性从强到弱的排列顺序为,滑坡宽度土体黏聚力内摩擦角管内压力管道埋深.  相似文献   

18.
为研究地埋管周围不同蓄热材料土壤温度场的分布情况,选定黏土、砂层及砾石3种不同蓄热体,利用Gambit建模软件建立简单的地埋管模型,选择距地埋管中心间距不同的5个测点,利用Fluent数值模拟软件进行蓄热体温度场仿真计算,研究相同蓄热材料距地埋管中心距离不同时以及不同蓄热材料距地埋管中心间距相同时各测点温度的变化情况。结果表明,地埋管周围蓄热材料相同时,土壤各测点温度变化趋势因测点的距离不同而不同,且距离中心越近温度变化越明显;地埋管周围蓄热材料不同时,相同测点温度变化趋势基本一致,且每年取热完成以后的土壤温度升高,但由于导热系数的不同引起每年蓄热及取热过程中温度、蓄热量和取热量的差异。研究结果可为太阳能耦合地源热泵系统地埋管的工程设计提供理论参考。  相似文献   

19.
为研究地埋管周围不同蓄热材料土壤温度场的分布情况,选定黏土、砂层及砾石3种不同蓄热体,利用Gambit建模软件建立简单的地埋管模型,选择距地埋管中心间距不同的5个测点,利用Fluent数值模拟软件进行蓄热体温度场仿真计算,研究相同蓄热材料距地埋管中心距离不同时以及不同蓄热材料距地埋管中心间距相同时各测点温度的变化情况。结果表明,地埋管周围蓄热材料相同时,土壤各测点温度变化趋势因测点的距离不同而不同,且距离中心越近温度变化越明显;地埋管周围蓄热材料不同时,相同测点温度变化趋势基本一致,且每年取热完成以后的土壤温度升高,但由于导热系数的不同引起每年蓄热及取热过程中温度、蓄热量和取热量的差异。研究结果可为太阳能耦合地源热泵系统地埋管的工程设计提供理论参考。  相似文献   

20.
针对山西省太原地区地源热泵应用导致土壤热平衡难以满足的问题,在传统空气源耦合地源热泵系统的基础上,设计一套新的喷气增焓空气源耦合地源热泵系统,并建立相关的数学模型.以太原地区某一建筑的应用为例,利用DeST软件模拟计算案例建筑全年冷、热负荷需求特征,利用TRNSYS软件仿真分析常规地源热泵、空气源热泵、喷气增焓空气源耦合地源热泵系统的性能,并对新的喷气增焓空气源耦合地源热泵系统性能进行优化.结果表明:案例建筑全年累计冷、热负荷比为1.57∶1.00,应用常规地源热泵后,土壤初始温度和最高温度逐年下降,10 a后平均温度降幅14.3%;与常规地源热泵系统比较,喷气增焓空气源耦合地源热泵系统初投资节省12.5%,节省25.8%的打井数,节省33.9%的运行费和15.9%的总费用,可解决埋管区土壤冷、热不平衡、埋管面积不足的问题,夏季性能系数(COP)提升26.2%,冬季制热性能系数(COPh)提升12.3%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号