首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
一种改进的最小二乘支持向量机算法   总被引:1,自引:0,他引:1  
最小二乘支持向量机是标准支持向量机的一种扩展,它是支持向量机在二次损失函数下的一种形式.它用等式约束代替不等式约束,求解过程变为解一组等式方程,避免了求解耗时的二次规划问题,但同时也丧失了标准支持向量机的稀疏性,影响了二次学习的效率.针对上述问题,本文提出了一种改进的最小二乘支持向量机增量学习方法.改进的最小二乘支持向量机算法采用自适应剪枝方法对解进行稀疏,根据每次训练得到的分类器性能来设定剪枝阚值和样本增量的大小,如果得到的分类器性能好,剪枝阈值和样本增量就大,反之,剪枝阚值和样本增量就小,从而提高了最小二乘支持向量机训练效率,解决了稀疏性问题.最后,仿真实验表明该算法方案可行.  相似文献   

2.
一种新的支持向量机增量学习算法   总被引:22,自引:0,他引:22  
提出一种新的支持向量机增量学习算法。分析了新样本加入训练集后,支持向量集的变化情况。基于分析结论提出新的学习算法。算法舍弃对最终结论无用的样本,使得学习对象的知识到了积累。实验结果表明本算法在保证分类准确度的同时,在增量学习问题上比传统的支持向量机有效。  相似文献   

3.
一种SVM增量学习算法   总被引:13,自引:6,他引:13  
分析了SVM理论中SV(支持向量)集的特点,给出一种SVM增量学习算法,通过在增量学习中使用SV集与训练样本集的分类等价性,使得新的增量训练无需在整个训练样本空间进行,理论分析和实验结果表明,该算法能然保证分类精度的同时有效地提高训练速度。  相似文献   

4.
我们知道,支持向量机(Support Vector Machine,SVM)型学习算法的计算复杂性和稀疏性对分析和处理大数据来说是非常重要的两个因素,尤其是对高维数据.学者们针对这两个因素做了大量的研究,提出了许多改进的SVM型算法,常见的有基于最小二乘技术的SVM型算法和孪生SVM型算法.它们当中,有些算法的出发点基本相同,但是求解方法上略有不同;有些算法有明显不同的出发点,其所构建的最优化模型也不相同.选取八个较具代表性的最小二乘SVM型算法,分析和比较它们之间的优势和劣势,以期读者更加深入的理解这类算法,且在应用于实际问题中时更具有选择性.  相似文献   

5.
通过分析现有SVM的两种改进算法:半监督学习算法和增量学习算法,给出了对现有的增量学习算法的改进,提出了一种新的半监督增量SVM学习算法,将其应用于Web文本分类中,并验证了半监督增量SVM学习算法的有效性和可行性。  相似文献   

6.
支持向量机学习算法的本质是从训练集中寻找支持向量,因此能否通过训练算法能快速找出支持向量是衡量支持向量机算法优劣的重要标准.本文提出了一种新的快速训练支持向量机的增量学习算法,首先,给出边界向量的定义,然后,对一个给定的新加人的样本,新的学习方法验证其是否为边界向量,如果是,将其加入到训练集中重新训练支持向量机,如果不是,就舍弃,这样能达到减少训练样本、降低训练复杂性目的,最后,给出了一个增量学习算法.实验表明测试误差和支持向量数量与SMO算法大致相当,而训练速度明显加快.  相似文献   

7.
一种改进的NAS-RIF图像盲复原算法   总被引:1,自引:0,他引:1  
针对模糊含噪退化图像的盲复原处理,文章以NAS-RIF算法为基础,对其存在的抑制噪声不理想的缺陷进行了相应改进.首先采用基于最小二乘支持向量机的去噪方法对退化图像进行预处理,在抑制噪声的同时保持图像的细节特征,进而在每次复原迭代过程中加入低通滤波环节,进一步减少噪声对代价函数收敛的影响,提高复原图像的信噪比.另外,对退化图像使用了阈值分割技术确定图像支撑域,保证复原的准确性.实验结果表明,改进的NAS-RIF算法抗噪声干扰的能力比原算法有显著的提高.  相似文献   

8.
我们知道,基于SVR的学习算法的计算复杂性和稀疏性对分析和处理大数据来说是非常重要的两个因素,尤其是对高维数据.为此,学者们做了大量的研究工作并提出了许多改进的SVR型算法.它们当中,有些算法的出发点基本相同,只是求解方法上略有不同;有些算法有明显不同的出发点,其所构建的最优化模型也不相同,但求解方法上大同小异.本文选择四个较具代表性的TSVR型学习算法,分析和比较它们的性能,以期更加深入的理解这些算法,且在应用中更具有选择性.  相似文献   

9.
支持向量机增量学习算法综述   总被引:2,自引:0,他引:2  
支持向量机增量学习算法,有效的解决了因数据集庞大而引起的内存不足问题,改善了因出现新样本而造成原分类器分类精度降低、分类时间延长的局面。本文阐述了几种具有代表性的增量学习算法,比较了它们的优缺点,给出了进一步的研究方向。  相似文献   

10.
基于支持向量机的增量学习算法   总被引:1,自引:0,他引:1  
通过对支持向量机KKT条件和样本间关系的研究,分析了新增样本加入训练集后支持向量的变化情况,提出一种改进的Upper Limiton Increment增量学习算法.该算法按照KKT条件将对应的样本分为3类:位于分类器间隔外,记为RIG;位于分类间隔上,记为MAR;位于分类间隔内,记为ERR.并在每次训练后保存ERR集,将其与下一个增量样本合并进行下一次训练.实验证明了该算法的可行性和有效性.  相似文献   

11.
 利用最小二乘方法和临近支持向量机(PSVM)算法,并结合双胞支持向量机(TSVR),提出了最小二乘双胞支持向量回归机(LSTSVR).作为对照,TSVR需要求解2个二次规划问题,而LSTSVR仅需求解2个线性方程组.最后利用不同的实例验证了所提算法的可行性和有效性.  相似文献   

12.
支撑向量机是以统计学习理论为基础,以结构风险最小化(Structure Risk Minimization,SRM)为原则的新型学习机,已经广泛地用于模式识别、回归估计、函数逼近、密度估计等方面。在对已有的分类问题的SVM算法的研究分析基础上,结合Lin和Wang提出的模糊支撑向量机模型和现有的最小二乘支撑向量机模型得出最小二乘模糊支撑向量机模型。  相似文献   

13.
介绍了最小二乘支持向量机(LS-SVM)回归算法的基本原理,并使用MATLAB6.5结合LS-SVM工具箱对某型雷达磁控管状态监测数据进行了预测。  相似文献   

14.
提出了一种基于聚类的支持向量机增量学习算法.先用最近邻聚类算法将训练集分成具有若干个聚类子集,每一子集用支持向量机进行训练得出支持向量集;对于新增数据首先聚类到相应的子集,然后计算其与聚类集内的支持向量之间的距离,给每个训练样本赋以适当的权重;而后再建立预估模型.此算法通过钢材力学性能预报建模的工业实例研究,结果表明:与标准的支持向量回归算法相比,此算法在建模过程中不仅支持向量个数明显减少,而且模型的精度也有所提高.  相似文献   

15.
从降低时间和空间复杂度的角度出发,针对支持向量机的增量学习问题展开了研究,描述并比较了目前研究与应用较多的几种支持向量机增量学习算法,提出了一种基于壳向量的支持向量机渐进式增量学习算法,仿真实验结果表明:该算法在保证良好的分类精度的前提下,提高了学习效率.  相似文献   

16.
将直觉模糊集的相关理论引入到最小二乘支持向量机中, 建立了直觉模糊最小二乘支持向量机的数学模型, 并对模型的求解过程进行推导. 为验证该算法的有效性, 在人工数据集和标准数据集上进行仿真实验. 实验结果表明, 直觉模糊最小二乘支持向量机算法可降低分类时样本中噪声和野点对分类效果的影响.  相似文献   

17.
针对标准支持向量机计算复杂度高、内存开销大、训练速度慢的缺点,为改善标准支持向量机的训练效率,快速优化阵列波束,提出了基于最小二乘支持向量机(least squares support vector machine,LSSVM)的阵列波束优化方法。LSSVM采用二次损失函数取代标准支持向量机中的不敏感损失函数,将不等式约束变为等式约束,从而将二次规划问题转化为一个线性矩阵求解问题,具有良好的快速性;与传统的标准支持向量机波束形成相比,所需计算资源更少,训练速度更快,计算效率更高,泛化能力更强。仿真实验结果表明:在保持波束形成的性能指标基本不变的情况下,LSSVM降低了计算复杂度,减少了内存开销,提高了运算速度和收敛精度,为波束形成器的优化设计提供了一种新的有效方法。  相似文献   

18.
图像篡改最基础的手段便是拼接,为了恢复人们对数字图像的信任,图像拼接检测变得非常重要.论文提出一种基于最小二乘孪生支持向量机的图像拼接检测算法,算法对待测图像进行对偶数复小波变换以获取不同的子带图像,对子带图像提取其马尔科夫状态转移概率矩阵,将该概率矩阵作为拼接特征向量送入最小二乘孪生支持向量机训练以获取预测模型,最后根据该模型来判断待测图像是否经过拼接.在哥伦比亚大学无压缩图像拼接检测评估库和哥伦比亚大学图像拼接检测评估库上分别进行实验,与传统算法做对比,实验结果充分证明论文所提算法具有更高的拼接检测准确率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号