共查询到20条相似文献,搜索用时 15 毫秒
1.
基于云模型的随机性、模糊性和稳定性特征,通过正态云发生器对量子粒子群优化算法(QPSO)进行改进,提出了一种基于正态云模型的自适应量子粒子群优化算法(CMAQPSO).该算法将正态云模型引入到QPSO算法的研究,定义了收缩扩张系数的云调整策略和粒子云变异算子的构建公式,给出了量子势阱中心调整策略和边界修正策略.用5个标准测试函数对SPSO,OPSO,CVCPSO,CMAQPSO 4种算法进行对比测试,实验结果表明,CMAQPSO在5个测试函数上的平均寻优效果都明显优于其他3种算法. 相似文献
2.
针对子母弹子弹引信的工作特点,根据引信设计要求和引信安全性设计准则,提出了一种新型的引信惯性保险机构. 建立了引信惯性保险机构的数学模型,并利用量子粒子群算法对其设计参数进行了优化. 通过运动学仿真模拟试验表明,引信惯性保险机构可以正常工作,验证了其设计原理的正确性. 相似文献
3.
量子粒子群算法优化钢结构截面 总被引:1,自引:0,他引:1
谭德坤 《河南科技大学学报(自然科学版)》2011,32(3):47-51,111
传统的钢结构截面优化方法通常采用试算法,很难获得全局最优解。在经典粒子群算法的基础上,通过研究量子行为,提出了基于量子行为的粒子群算法,并将其应用于钢结构截面优化设计,详细描述了算法的原理和优化步骤,给出了钢结构截面优化数学模型,并对两个典型工程优化实例进行了实验验证。典型算例的截面优化结果表明:与PSO算法及传统试算法相比,该算法的优化结果最好,在满足工程要求的前提下,截面参数合理,截面面积最小,经济性得到了明显提高。 相似文献
4.
几何约束问题可以等价为求解非线性方程组问题,同时也可以将几何约束问题转化为一个优化问题来求解.受经典粒子群优化算法和量子动力学启发,提出一种新的算法——量子行为粒子群优化算法(QPSO)来求解几何约束问题.在QPSO模型里,粒子的状态不再通过位置和速度来决定,而是通过一个波函数来确定.这种算法的主要优点就是可以在感兴趣的问题上保持种群的多样性.实验结果表明,该方法可以提高几何约束求解的效率和收敛性. 相似文献
5.
将量子粒子群优化算法用于运输问题求解,用粒子的位置表示运输路径,建立运输路径的数学模型.与遗传算法相比,实验结果表明,该算法在求解运输问题中提高了最优解的精度,且具有较快的收敛速度. 相似文献
6.
提出了一种有效的快速k近邻分类文本分类算法,即PSOKNN算法,该算法利用粒子群优化方法的随机搜索能力在训练文档集中进行有指导的全局随机搜索. 在搜索k近邻的过程中,粒子群跳跃式移动,掠过大量不可能成为k近邻的文档向量,从而可以快速找到测试样本的k个近邻. 以Reuters 21578文档集分类为例验证算法的有效性,结果表明,保持k近邻法分类精度,新算法比KNN算法降低分类时间70%. 相似文献
7.
使用量子粒子群优化算法(QPSO),将可能的web服务工作流执行路径看作粒子,按照QPSO算法进行进化,从而解决了基于服务质量(QualityofService,qos)~束的Web服务组合问题,此为解决Web服务组合问题提出了一种新的思路.实验表明,使用QPSO算法求解复杂web服务组合问题在组合时间上具有一定的优越性. 相似文献
8.
把QPSO算法与模糊c-均值(FCM)算法相结合提出一种混合模糊聚类算法(QPSO—FCM),将FCM算法中基于梯度下降的迭代过程用新算法进行替代,能够在一定程度上克服FCM算法易陷入局部极小的缺陷,降低FCM算法的初值敏感度.通过典型的Wine的数据实验结果证明,改进后的新算法具有良好的收敛性,聚类效果也有一定的改善. 相似文献
9.
基于QPSO的图像分割算法 总被引:1,自引:0,他引:1
汪筱红 《合肥工业大学学报(自然科学版)》2008,31(7)
文章将具有量子行为粒子群优化(QPSO)算法应用到图像分割中,提出了一种新的图像分割算法.新方法基于最佳熵阈值分割技术,用QPSO算法自适应选取分割阈值;仿真实验针对Lena图像分割问题,将标准粒子群优化(PSO)算法与QPSO算法分别独立运行,仿真结果表明,基于QPSO优化的图像分割算法不仅克服了PSO容易过早陷入局部最优值的缺点,而且分割速度更快,是一种更有效的分割方法. 相似文献
10.
为了提升公共空间主功能区布局合理性,提出基于量子粒子群算法的公共空间主功能区布局优化设计方法。将城市公共空间不同功能区测绘数据分为空间数据和非空间数据,进行数据转换处理。利用深度神经网络提取公共空间主功能区空间分布特征;建立公共空间主功能区布局优化设计模型,将复杂的布局问题转换为模型形式,并设置模型约束条件;基于量子粒子群算法求解布局优化模型,实现公共空间主功能区布局优化设计。测试结果表明,该方法能够对公共空间主功能区布局进行合理的优化设计,设计效果较好。 相似文献
11.
针对现有特征选择方法中存在的收敛速度慢和计算效率低等问题,提出了一种基于樽海鞘群与粒子群优化的混合优化(hybrid optimization of salp swarm algorithm and particle swarm optimization,HOSSPSO)特征选择方法,该方法在樽海鞘群算法(salp swarm algorithm,SSA)的基础上,引入粒子群优化(particle swarm optimization,PSO),提高了SSA的收敛速度,改进了探索和开发步骤的效率,增加了解空间更多的灵活性和多样性,使得方法能够迅速获得全局最优值.为了验证算法的性能,在2个实验序列上进行了测试:第一个实验序列使用基准函数,将HOSSPSO与标准SSA、PSO进行了比较;第二个实验序列采用不同的UCI数据集,通过提出的算法确定最佳特征集.实验结果表明,相比于其他优化算法,HOSSPSO的性能更具优势,在多项评估指标中获得较好的效果,能以极少量的特征获得最大的分类精度. 相似文献
12.
量子粒子群算法求解整数规划的方法 总被引:1,自引:0,他引:1
粒子群算法主要用于优化连续性问题。如果用于求解整数规划问题,算法的粒子位置必须解决取整问题;而量子粒子群算法求解整数规划问题具有更高的效率。利用三种取整方法与量子粒子群算法结合,求解非线性整数规划问题,并且与标准粒子群算法求解整数规划问题进行比较。通过对基准函数仿真实验,比较了六种方法求解整数规划问题。实验结果表明,基于随机取整的量子粒子群算法搜索成功率优于其他五种方法,其综合搜索效率更佳。寻找了一种更优的求解整数规划方法。 相似文献
13.
流水车间调度问题广泛存在于企业生产过程中,优化的调度方案可以提高企业生产效率,降低生产成本。提出了基于混沌量子粒子群优化算法并应用于求解置换流水车间调度问题,该算法在量子粒子群算法(QPSO)的基础上,引入了混沌机制,在保持QPSO算法收敛速度快的同时,利用混沌机制的遍历性,克服了QPSO易陷入局部极小值的缺点。同时提出了一种新的混沌变量到工件排序的编码方案,能够完整保留混沌的遍历性。仿真结果验证了所提出的新的调度算法能更好地探索更优解,同时不失去量子粒子群算法的收敛速度。 相似文献
14.
以量子行为与粒子群优化相融合的量子粒子群算法解决可用输电能力计算的优化问题.利用Matlab软件平台,以IEEE-30节点标准系统为算例进行仿真计算,比较本算法与传统粒子群算法的仿真结果,分析两种算法的寻优性能和收敛速度.仿真结果验证了量子粒子群算法解决可用输电能力优化问题的有效性. 相似文献
15.
刘韬 《西南民族学院学报(自然科学版)》2009,35(3)
本文首先介绍了文本分类算法,并针对基本粒子群算法在收敛性能上的缺陷, 提出了具有量子行为的粒子群优化算法, 把它应用于文本主题挖掘和文本分类. 实验结果显示,这种文本分类方法和基本粒子群算法比较, 提高了文本分类的准确率、召回率, 具有很好的性能. 相似文献
16.
文章用一种量子粒子群优化算法对混合型有源电力滤波器(HAPF)参数进行多目标优化设计,优化目标包括系统的投资成本、无功补偿和滤波效果等,该算法解决了HAPF系统的参数匹配以及无源、有源容量的分配问题。实验中该算法寻优速度较快,THDU、THDI分别降低到1.9%和2.0%,APF容量仅占混合滤波器容量的8.1%,使HAPF在电能质量综合治理中实现了既有效又经济的目的。 相似文献
17.
为提升工程应用中图像分割的质量,在变异量子粒子群算法的基础上进行改进,并结合最大类间方差法提出了一种基于改进量子粒子群优化(QPSO)的多阈值图像分割算法.该算法结合贝叶斯定理与粒子搜索过程中的历史信息构建了一个记忆向量,然后根据记忆向量对每个粒子的行为进行预测,并以此自动设置各粒子的变异概率,使算法在保持一定局部开发能力的同时提升全局搜索能力.在Berkeley数据集上的仿真实验结果表明,与两种基于粒子群的图像分割算法相比,文中算法能获得更为稳定且清晰的图像分割结果. 相似文献
18.
在物流系统网络中,物流配送中心地址的优化选择不但能够高效及时地完成物资的配送,而且能使得配送成本和仓储成本等运营成本最小化,显著提高物流管理的效率和能力。针对物流配送中心选址最优解的问题,通常采用经典粒子群算法解决,但其有易早熟收敛和仅能得到局部最优解的缺陷。为了克服此缺点,将量子进化算法融入经典粒子群算法中,采用量子理论中独有的叠加态和概率幅特性,粒子最优位置的搜寻采用量子自旋门完成,粒子位置的多样性变异采用量子非门完成,以免出现局部最优解和早熟收敛缺陷。实验结果表明,与经典粒子群算法相比,量子粒子群算法在最优解的搜寻能力和优化效率方面更具有优势,能够优化配送中心的地址选取,从而减少物流运营的总成本,提高物流配送的效率,优化物流管理系统。 相似文献
19.
变尺度混沌量子粒子群算法 总被引:1,自引:0,他引:1
利用混沌算子的遍历性,结合量子粒子群的快速收敛性,提出了变尺度混沌量子粒子群算法(CQPSO)。针对标准粒子群容易陷入局部最优的缺陷,CQPSO能快速收敛到最优解。对标准测试函数的测试结果表明:该算法在收敛速度和收敛精度上都得到了大幅度的提高。 相似文献
20.
基于佳点集构造的改进量子粒子群优化算法 总被引:1,自引:0,他引:1
针对粒子群优化算法易出现早熟收敛及局部搜索能力不足的特点,提出一种改进的量子粒子群优化算法(IQPSO).该算法在量子粒子群优化算法(QPSO)的基础上,引入佳点集初始化量子的初始角位置,提高初始种群的遍历性;在粒子角速度位置更新中,采用混沌时间序列数,促使粒子跳出局部极值点;为避免粒子陷入早熟收敛,在算法中加入变异处理.仿真实验结果表明:与标准粒子群优化(SPSO)算法和量子粒子群优化(QPSO)算法比较,提出的算法具有快速的收敛能力、良好的稳定性,其优化性能有较明显的提高. 相似文献