共查询到17条相似文献,搜索用时 78 毫秒
1.
一种基于SIFT特征匹配的工件识别方法 总被引:2,自引:0,他引:2
为了解决平移、旋转、缩放和部分遮挡等复杂环境下的工件图像匹配识别问题,给出了一种基于SIFT(尺度不变特征变换)特征匹配的工件识别算法.该算法采用SIFT特征作为匹配特征,引入欧氏距离作为图像匹配的相似性度量,并采用设定阈值的方法剔除误配点.实验结果表明,该算法能有效解决具有平移、旋转、缩放和部分遮挡等情况下的工件匹配识别问题. 相似文献
2.
在对3种数据降维技术进行了比较研究的基础上,提出一种基于主成分分析(PCA)和BP神经网络的车标识别算法.首先,利用PCA方法获得特征车标;然后,将待识别车标投影到特征车标张成的子空间;最后,通过BP神经网络进行车标识别.实验结果表明,该算法能有效提高车标的识别率,对光照和噪声有很强的鲁棒性. 相似文献
3.
尺度不变特征变换(SIFT)算法是一种对旋转、尺度缩放和光照保持不变性的局部特征图像匹配算子,是公认的识别率最佳算法之一。而SIFT算法仅使用灰度信息,忽略颜色信息,当对彩色目标识别时,识别率降低。针对此问题,结合直方图保持良好的旋转、缩放、模糊不变性等特点,提出基于局部颜色直方图的SIFT特征描述算法(即CH-SIFT)。在SIFT算法关键点位置不仅生成梯度直方图特征描述,同时生成颜色直方图特征描述。在匹配时,首先使用梯度直方图特征描述对匹配对初次筛选,然后使用颜色直方图特征描述再次筛选,最后确定是否为满足条件的匹配对。实验对比表明,CH-SIFT算法具有识别率高和匹配时间短等优点,能够有效地实现彩色目标匹配。 相似文献
4.
一种快速车标定位方法 总被引:10,自引:0,他引:10
车标定位是车标识别系统中至关重要的一步,作者提出了一种快速的车标定位算法,即在已知车牌位置的情况下,利用车标位置垂直方向能量集中的特点进行滤波处理以及在粗定位矩形框中利用模板匹配的方法得到车标的准确位置,实验结果表明,该方法定位准确率在95%以上,平均速度在150ms至200ms之间。 相似文献
5.
基于SIFT和小波变换的图像拼接算法 总被引:1,自引:0,他引:1
提出了一种基于尺度不变特征变换(SIFT)和小波变换的图像拼接算法,以提高室外复杂场景的图像拼接质量.利用SIFT算法提取基准图像(待匹配图像)和后续图像(与基准图像进行匹配的图像)的特征点,确定特征点的位置、尺度与方向;利用128维向量对特征点进行描述;利用最近邻法完成两幅图像特征点的匹配,确定重合区域;利用基于小波变换的多分辨率方法完成对图像的拼接.实验结果表明,该方法对亮度差异较大的图像拼接效果良好,适宜于室外复杂环境的图像拼接. 相似文献
6.
自动全景生成被广泛应用于全景数码相机,卫星图像拼接以及医学图像分析中。本文提出一种基于尺度不变特征变换(SIFT)算法和改进的普氏分析(Procrustes analysis)的自动全景图像生成算法。实验证明该算法能够根据多幅图像的特征自动准确地拼接生成全景图像。 相似文献
7.
为了减少图像拼接方法的计算复杂度,提出一种基于尺度不变特征变换(SIFT)特征矢量图的快速图像拼接方法.该方法首先结合相位相关算法,确定待拼接图像的重叠区域,限定SIFT特征点检测范围;然后考虑特征点的空间位置信息,构建SIFT特征矢量图像,以便在特征匹配时限制匹配点的搜索范围,快速获得匹配点对.实验结果表明,该方法减少了大量的不必要搜索,提高了图像拼接速度. 相似文献
8.
尺度不变特征变换SIFT(scale invariant feature transform)对图像尺度、旋转、平移具有不变性,而被广泛应用,但是匹配过程中的错配问题难以避免。针对错配点的问题,对匹配策略进行了优化,利用人脸图像中关键点的特征描述子,对局部距离进行加权平均。实验表明,该方法能够有效剔除错配点,提高人脸匹配的正确识别率。 相似文献
9.
SIFT算法研究内容概述 总被引:2,自引:0,他引:2
SIFT算法是目前立体匹配技术的研究热点,因其匹配能力较强,能处理两幅图像平移、旋转、仿射变换等情况下的匹配问题,甚至对于任意角度拍摄的图像也有较稳定的匹配能力。该算法目前的中文资料较少,基于此本文对其研究主要内容进行简单介绍并结合具体实验图像分析。 相似文献
10.
针对图像特征提取算法-SIFT,特征描述器维数较高,特征匹配耗费时间较长,匹配过程中存在相同图像不能匹配和不同图像能够匹配等问题,提出了一种改进SIFT算法与KD-tree搜索匹配算法相结合的新方法。采用KD-Tree算法替代传统链表式搜索方法降低特征点匹配时间;把特征点间距离和特征描述子内积同时作为匹配标准,加入相应匹配阈值减少匹配错误率,并通过理论和实验证明采用欧几里德距离作为相似性度量具有更高的匹配成功率。实验结果表明,在图像特征匹配中,该算法能够有效减少特征匹配错误率,大幅度降低匹配时间,具有较好的实时性和鲁棒性。 相似文献
11.
针对车标识别准确率的问题,提出一种基于ResNet-18模型改进残差网络的车标识别算法.首先,利用残差网络并对其进行改进,使用改进的线性修正单元Leaky ReLU激活函数代替原激活函数;其次,调整传统的残差网络结构,将批量标准化和激活函数放在卷积层前,并减少网络参数以加速网络训练.实验结果表明,改进后的残差网络模型识... 相似文献
12.
基于SIFT算子的图像匹配算法研究 总被引:4,自引:0,他引:4
针对目前基于SIFT(scale invariant feature transform)的图像匹配算法在匹配相似区域较多的可见光图像时,匹配约束条件单一,没有有效剔除误匹配点,误匹配率高的问题,提出一种匹配改进算法,针对128维SIFT特征向量,采用距离匹配和余弦相似度匹配相结合的测度方法,利用特征点方向一致性进一步降低误匹配率. 实验结果表明:改进算法对图像的缩放、旋转、光照、噪声和小尺度的视角变换均有较好的匹配效果. 与原算法相比,在保证匹配点数和匹配时间的基础上,改进算法对旋转、缩放、噪声模糊和光照变换的误匹配率平均降低10%~20%,对于小尺度的视角变换,误匹配率平均降低5%. 相似文献
13.
针对无人驾驶飞机UAV(Unmanned Aerial Vehicle)航空组合相机获取的大像幅影像旋偏角较大、 大尺度变化和颜色差异明显的问题, 提出基于极几何和单应约束的SIFT(Scale Invariant Feature Transform)特征多尺度LSM(Least Squares Matching)算法。该算法顶层金字塔影像采用SIFT快速匹配, 对匹配结果利用改进的RANSAC(Random Sample Consensus)算法计算影像间单应矩阵和基本矩阵; 对影像进行Harris特征提取, 根据极几何和单应约束采用双向一致性相关系数算法进行密集匹配; 通过更新单应矩阵, 设定阈值删除误匹配点; 对匹配的同名点进行最小二乘匹配获取子像素级精度。通过对具有较大旋偏角、 大尺度变化和颜色差异的3组实际航摄影像的试验对比表明, 与传统方法相比, 该算法具有较高的匹配成功率和较好的有效性。 相似文献
14.
针对现有SIFT算法时间复杂度较高的问题,提出一种基于Hough变换及SIFT特征提取的图像匹配方法。首先,用Hough变换算法检测建筑物区域,以缩小检测与匹配的范围;然后,用SIFT算法在给定区域进行特征点检测与匹配;最后,提出一种两级排除错误匹配的方法,该算法对建筑物序列图像匹配具有光照强度、平移、旋转不变性。实验结果表明,该方法的匹配准确率至少高出比较方法9%。 相似文献
15.
原始SIFT算法采用不同参数的高斯核取差,是对图像空间性质的一种测量方法. 本文在光谱维度上取差,用光学系统在光谱维度上的差异作为图像空间性质的测量方法;传统SIFT方法及大量的改进方法只统计以特征点为中心的邻域范围内图像块的像素信息,文中将匹配过程分为2个步骤,首先利用邻域范围内的图像块像素信息进行粗匹配,然后选取排序后相似程度最高的4组匹配对作为基准匹配对,对特征点进行二次校验. 仿真结果表明文中的设计方式显著增加了检测到的特征点数量,有效剔除了错误匹配. 相似文献
16.
针对采用颜色或边缘等特征的目标跟踪算法所存在的跟踪效果不稳定的问题,提出了一种基于极线约束尺度不变特征变换(SIFT)和粒子滤波的目标跟踪方法.该方法采用SIFT特征向量构建目标模型,引入极线约束改善目标匹配精度,采用粒子滤波算法获得SIFT特征向量的候选目标模型,利用似然函数计算目标模型与候选目标模型间的相似性.实验结果表明,该方法可解决目标与背景颜色相似时的跟踪失败问题,且对目标外形与位姿发生变化具有较好的适应能力. 相似文献
17.
李岩(1978-), 男, 长春人, 长春工业大学副教授, 主要从事智能机械与机器人、机器视觉研究, (Tel)86-13069046655(E-mail)liyan_dianqi@ ccut. edu. cn。 相似文献