首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 354 毫秒
1.
2.
Expression of oncogenic Ras in primary human cells activates p53, thereby protecting cells from transformation. We show that in Ras-expressing IMR-90 cells, p53 is phosphorylated at Ser33 and Ser46 by the p38 mitogen-activated protein kinase (MAPK). Activity of p38 MAPK is regulated by the p53-inducible phosphatase PPM1D, creating a potential feedback loop. Expression of oncogenic Ras suppresses PPM1D mRNA induction, leaving p53 phosphorylated at Ser33 and Ser46 and in an active state. Retrovirus-mediated overexpression of PPM1D reduced p53 phosphorylation at these sites, abrogated Ras-induced apoptosis and partially rescued cells from cell-cycle arrest. Inactivation of p38 MAPK (the product of Mapk14) in vivo by gene targeting or by PPM1D overexpression expedited tumor formation after injection of mouse embryo fibroblasts (MEFs) expressing E1A+Ras into nude mice. The gene encoding PPM1D (PPM1D, at 17q22/q23) is amplified in human breast-tumor cell lines and in approximately 11% of primary breast tumors, most of which harbor wildtype p53. These findings suggest that inactivation of the p38 MAPK through PPM1D overexpression resulting from PPM1D amplification contributes to the development of human cancers by suppressing p53 activation.  相似文献   

3.
4.
5.
iASPP oncoprotein is a key inhibitor of p53 conserved from worm to human   总被引:39,自引:0,他引:39  
We have previously shown that ASPP1 and ASPP2 are specific activators of p53; one mechanism by which wild-type p53 is tolerated in human breast carcinomas is through loss of ASPP activity. We have further shown that 53BP2, which corresponds to a C-terminal fragment of ASPP2, acts as a dominant negative inhibitor of p53 (ref. 1). Hence, an inhibitory form of ASPP resembling 53BP2 could allow cells to bypass the tumor-suppressor functions of p53 and the ASPP proteins. Here, we characterize such a protein, iASPP (inhibitory member of the ASPP family), encoded by PPP1R13L in humans and ape-1 in Caenorhabditis elegans. iASPP is an evolutionarily conserved inhibitor of p53; inhibition of iASPP by RNA-mediated interference or antisense RNA in C. elegans or human cells, respectively, induces p53-dependent apoptosis. Moreover, iASPP is an oncoprotein that cooperates with Ras, E1A and E7, but not mutant p53, to transform cells in vitro. Increased expression of iASPP also confers resistance to ultraviolet radiation and to cisplatin-induced apoptosis. iASPP expression is upregulated in human breast carcinomas expressing wild-type p53 and normal levels of ASPP. Inhibition of iASPP could provide an important new strategy for treating tumors expressing wild-type p53.  相似文献   

6.
7.
8.
A common polymorphism acts as an intragenic modifier of mutant p53 behaviour   总被引:24,自引:0,他引:24  
The p73 protein, a homologue of the tumour-suppressor protein p53, can activate p53-responsive promoters and induce apoptosis in p53-deficient cells. Here we report that some tumour-derived p53 mutants can bind to and inactivate p73. The binding of such mutants is influenced by whether TP53 (encoding p53) codon 72, by virtue of a common polymorphism in the human population, encodes Arg or Pro. The ability of mutant p53 to bind p73, neutralize p73-induced apoptosis and transform cells in cooperation with EJ-Ras was enhanced when codon 72 encoded Arg. We found that the Arg-containing allele was preferentially mutated and retained in squamous cell tumours arising in Arg/Pro germline heterozygotes. Thus, inactivation of p53 family members may contribute to the biological properties of a subset of p53 mutants, and a polymorphic residue within p53 affects mutant behaviour.  相似文献   

9.
Aurora kinase A (also called STK15 and BTAK) is overexpressed in many human cancers. Ectopic overexpression of aurora kinase A in mammalian cells induces centrosome amplification, chromosome instability and oncogenic transformation, a phenotype characteristic of loss-of-function mutations of p53. Here we show that aurora kinase A phosphorylates p53 at Ser315, leading to its ubiquitination by Mdm2 and proteolysis. p53 is not degraded in the presence of inactive aurora kinase A or ubiquitination-defective Mdm2. Destabilization of p53 by aurora kinase A is abrogated in the presence of mutant Mdm2 that is unable to bind p53 and after repression of Mdm2 by RNA interference. Silencing of aurora kinase A results in less phosphorylation of p53 at Ser315, greater stability of p53 and cell-cycle arrest at G2-M. Cells depleted of aurora kinase A are more sensitive to cisplatin-induced apoptosis, and elevated expression of aurora kinase A abolishes this response. In a sample of bladder tumors with wild-type p53, elevated expression of aurora kinase A was correlated with low p53 concentration. We conclude that aurora kinase A is a key regulatory component of the p53 pathway and that overexpression of aurora kinase A leads to increased degradation of p53, causing downregulation of checkpoint-response pathways and facilitating oncogenic transformation of cells.  相似文献   

10.
c-Abl, a conserved nonreceptor tyrosine kinase, integrates genotoxic stress responses, acting as a transducer of both pro- and antiapoptotic effector pathways. Nuclear c-Abl seems to interact with the p53 homolog p73 to elicit apoptosis. Although several observations suggest that cytoplasmic localization of c-Abl is required for antiapoptotic function, the signals that mediate its antiapoptotic effect are largely unknown. Here we show that worms carrying an abl-1 deletion allele, abl-1(ok171), are specifically hypersensitive to radiation-induced apoptosis in the Caenorhabditis elegans germ line. Our findings delineate an apoptotic pathway antagonized by ABL-1, which requires sequentially the cell cycle checkpoint genes clk-2, hus-1 and mrt-2; the C. elegans p53 homolog, cep-1; and the genes encoding the components of the conserved apoptotic machinery, ced-3, ced-9 and egl-1. ABL-1 does not antagonize germline apoptosis induced by the DNA-alkylating agent ethylnitrosourea. Furthermore, worms treated with the c-Abl inhibitor STI-571 (Gleevec; used in human cancer therapy), two newly synthesized STI-571 variants or PD166326 had a phenotype similar to that generated by abl-1(ok171). These studies indicate that ABL-1 distinguishes proapoptotic signals triggered by two different DNA-damaging agents and suggest that C. elegans might provide tissue models for development of anticancer drugs.  相似文献   

11.
A polymorphic microsatellite that mediates induction of PIG3 by p53   总被引:16,自引:0,他引:16  
  相似文献   

12.
iASPP is one of the most evolutionarily conserved inhibitors of p53, whereas ASPP1 and ASPP2 are activators of p53. We show here that, in addition to the DNA-binding domain, the ASPP family members also bind to the proline-rich region of p53, which contains the most common p53 polymorphism at codon 72. Furthermore, the ASPP family members, particularly iASPP, bind to and regulate the activity of p53Pro72 more efficiently than that of p53Arg72. Hence, escape from negative regulation by iASPP is a newly identified mechanism by which p53Arg72 activates apoptosis more efficiently than p53Pro72.  相似文献   

13.
14.
15.
Apoptosis is a genetically preprogrammed cellular event which can be repressed by survival genes or activated by death genes. Numerous viral gene products bind to these genes or are homologous in sequence and function with them and block or mimic their activities, for example proteins of adenovirus and of Epstein-Barr virus (EBV). First, the initial signal for apoptosis activation, which is mediated by Fas/Apo1/TNFR complex, can be inhibited by proteins from adenovirus (E1B 19 kDa and E3), from myxomavirus (MT2), from baculovirus (iap), from herpes simplex virus and cytomegalovirus, and induced by myxoviruses, hepatitis C virus and cytomegalovirus. Secondly, the transduction of the signal to the genes of the cell death machinery (p53, pRB, bcl-2) and the transactivation of the cellular protooncogenes (c-myc, c-fos, c-jun) can be inhibited by proteins from adenovirus (E1B 19 kDa), from EBV (BHRF1, LMP1, BZLF1, EBNA-5LP), from herpesvirus (orf16), from baculovirus (p35), from cytomegalovirus (IE1/IE2/IE86), from SV40 (T), from hepatitis B virus (pX) and from papillomavirus (E6) or induced by proteins from adenovirus (E1A), from herpes simplex type 1 (VP16), from papillomavirus (E7), from polyomavirus (T), from EBV (EBNA-5), from chicken anemia virus (VP3) and from B19 parvovirus (NS1). Third, the effector phase of apoptosis which includes the proteases (caspases) can be inhibited by proteins from cowpoxvirus (crmA) and from baculovirus (p53) or induced by Sindbis virus, coxsackievirus B3, arteriviridae and dengue virus. Early cell death limits virus production, reduces spread of progeny viruses and results in virus clearance under CTL activity. Delayed apoptosis at late stages of infection, allows production and spread of high yields of progeny viruses, evading host immune inflammatory responses and protecting progeny viruses from host enzymes and antibodies. Inhibition of apoptosis contributes to the maintenance of viral latency or to cell transformation. Such virally induced apoptosis may also contribute to pathogenesis and treatment of viral diseases.  相似文献   

16.
17.
18.
Mutations in BRCA1 and BRCA2 confer a high risk of breast and ovarian cancer, but account for only a small fraction of breast cancer susceptibility. To find additional genes conferring susceptibility to breast cancer, we analyzed CHEK2 (also known as CHK2), which encodes a cell-cycle checkpoint kinase that is implicated in DNA repair processes involving BRCA1 and p53 (refs 3,4,5). We show that CHEK2(*)1100delC, a truncating variant that abrogates the kinase activity, has a frequency of 1.1% in healthy individuals. However, this variant is present in 5.1% of individuals with breast cancer from 718 families that do not carry mutations in BRCA1 or BRCA2 (P = 0.00000003), including 13.5% of individuals from families with male breast cancer (P = 0.00015). We estimate that the CHEK2(*)1100delC variant results in an approximately twofold increase of breast cancer risk in women and a tenfold increase of risk in men. By contrast, the variant confers no increased cancer risk in carriers of BRCA1 or BRCA2 mutations. This suggests that the biological mechanisms underlying the elevated risk of breast cancer in CHEK2 mutation carriers are already subverted in carriers of BRCA1 or BRCA2 mutations, which is consistent with participation of the encoded proteins in the same pathway.  相似文献   

19.
The tumor suppressor p53, one of the most intensely investigated proteins, is usually studied by experiments that are averaged over cell populations, potentially masking the dynamic behavior in individual cells. We present a system for following, in individual living cells, the dynamics of p53 and its negative regulator Mdm2 (refs. 1,4-7): this system uses functional p53-CFP and Mdm2-YFP fusion proteins and time-lapse fluorescence microscopy. We found that p53 was expressed in a series of discrete pulses after DNA damage. Genetically identical cells had different numbers of pulses: zero, one, two or more. The mean height and duration of each pulse were fixed and did not depend on the amount of DNA damage. The mean number of pulses, however, increased with DNA damage. This approach can be used to study other signaling systems and suggests that the p53-Mdm2 feedback loop generates a 'digital' clock that releases well-timed quanta of p53 until damage is repaired or the cell dies.  相似文献   

20.
The sequential timing of cell-cycle transitions is primarily governed by the availability and activity of key cell-cycle proteins. Recent studies in yeast have identified a class of ubiquitin ligases (E3 enzymes) called SCF complexes, which regulate the abundance of proteins that promote and inhibit cell-cycle progression at the G1-S phase transition. SCF complexes consist of three invariable components, Skp1, Cul-1 (Cdc53 in yeast) and Rbx1, and a variable F-box protein that recruits a specific cellular protein to the ubquitin pathway for degradation. To study the role of Cul-1 in mammalian development and cell-cycle regulation, we generated mice deficient for Cul1 and analysed null embryos and heterozygous cell lines. We show that Cul1 is required for early mouse development and that Cul1 mutants fail to regulate the abundance of the G1 cyclin, cyclin E (encoded by Ccne), during embryogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号