首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了解决车辆目标检测中准确率低的问题,提出了一种基于改进YOLOv5算法的车辆目标检测.改进后的YOLOv5算法主要是在原来的基础上通过K-means聚类的方法对数据集中的目标边框进行重新聚类、并将CIoU损失函数和DIoU_nms应用于YOLOv5算法来提高目标识别效果.改进后的YOLOv5算法,目标检测mAP达到了85.8%,比改进前的YOLOv5算法提升了1.3%.  相似文献   

2.
针对现有的无人机检测算法无法同时兼顾检测速度及检测精度的问题,本文提出了一种基于YOLOv5s(You Only Look Once)的轻量化无人机检测算法TDRD-YOLO(Tiny Drone Real-time Detection-YOLO).该算法首先以YOLOv5s的多尺度融合层和输出检测层分别作为颈部网络和头部网络,引入MobileNetv3轻量化网络对原骨干网络进行重构,并将骨干网络后的通道在原YOLOv5s的基础上进行压缩,减小网络模型大小;其次,将骨干网络中Bneck模块的注意力机制由SE修改为(Convolutional Block Attention Module,CBAM)并在颈部网络引入CBAM,使网络模型更加关注目标特征;最后修改颈部网络的激活函数为h-swish,进一步提高模型精度.实验结果表明:本文提出的TDRD-YOLO算法平均检测精度达到96.8%,与 YOLOv5s相比,参数量减小到原来的1/11,检测速度提升1.5倍,模型大小压缩到原来的1/8.5.实验验证了本文算法可在大幅降低模型大小、提升检测速度的同时保持良好的检测性能.  相似文献   

3.
针对密集场景下行人检测的目标重叠和尺寸偏小等问题,提出了基于改进YOLOv5的拥挤行人检测算法。在主干网络中嵌入坐标注意力机制,提高模型对目标的精准定位能力;在原算法三尺度检测的基础上增加浅层检测尺度,增强小尺寸目标的检测效果;将部分普通卷积替换为深度可分离卷积,在不影响模型精度的前提下减少模型的计算量和参数量;优化边界框回归损失函数,提升模型精度和加快收敛速度。实验结果表明,与原始的YOLOv5算法相比,改进后YOLOv5算法的平均精度均值提升了7.4个百分点,检测速度达到了56.1帧/s,可以满足密集场景下拥挤行人的实时检测需求。  相似文献   

4.
针对传统的行人车辆目标检测算法因参数量大和计算复杂度高而在现实应用中受限的问题,基于轻量化深度学习网络提出改进的YOLOv5s行人车辆目标检测算法.首先,选用ghost模块替换主干网络中部分卷积模块进行模型剪枝,同时向网络中引入注意力机制,使得网络在减少模型参数量和提升模型性能两方面实现更好的平衡;其次,采用边界框的宽高差值计算代替边界框回归损失函数中宽高比距离的计算,加速网络的收敛;最后,通过构建真实交通场景下的行人车辆目标检测数据集检验模型的准确性和实时性.实验结果表明,在保持原算法较高精度的同时,改进后YOLOv5s算法的参数量下降28%,模型大小降低27%,节省了硬件成本,拓宽了YOLOv5s算法的应用场景.  相似文献   

5.
针对钢轨表面缺陷检测效率较低及抗干扰能力较差的问题,提出一种基于改进YOLOv5的钢轨表面缺陷检测算法.首先,采用图像增强操作对采集到的钢轨表面图像进行预处理,减轻高光、异物等噪声对检测效果的影响.其次,将多头自注意力层嵌入YOLOv5骨干网络末端,并为缺陷特征引入全局依赖关系,提升模型对密集缺陷的检测效果.最后,构建跨层加权级联结构,将浅层信息融入到深层网络中,使网络对缺陷边界的回归更为精准.实验结果表明:本文的钢轨表面缺陷检测算法对裂纹、剥落、磨损3类表面缺陷检测的平均精度均值达到98.2%,每秒帧数(Frames Per Second, FPS)达到77帧/s,能够在不同的环境条件中实现对缺陷的精准检测,比其他某些同类算法拥有更高的鲁棒性、准确性和实时性.  相似文献   

6.
为提高自动驾驶中的道路目标检测精度,设计了一种基于YOLOv5的道路目标检测模型。该模型在YOLOv5s的网络模型基础上,将原始的初始锚框聚类算法改为K-means++算法来减小随机带来的聚类误差;并在Backbone中SPP模块之前引入SENet注意力机制,以增强道路目标重要特征并抑制一般特征,达到提高检测网络对道路目标的检测能力。在VOC2012改进数据集上训练、测试,基于改进的YOLOv5s的模型比原始YOLOv5s模型平均准确精度提高了2.4%。实验结果表明,改进的YOLOv5s模型能较好地满足道路目标检测的精度要求。  相似文献   

7.
实时的交通场景目标检测是实现电子监控、自动驾驶等功能的先决条件.针对现有的目标检测算法检测效率不高,以及大多数轻量化目标检测算法模型精度较低,容易误检、漏检目标的问题,本文通过改进YOLOv5目标检测算法来进行模型训练,再使用伪标签策略对训练过程进行优化,然后在KITTI交通目标数据集上将标签合并为3类,对训练出的模型进行测试.实验结果表明,改进的YOLOv5最终模型在该所有类别上的mAP达到了92.5%,对比原YOLOv5训练的模型提高了3%.最后将训练的模型部署到Jetson Nano嵌入式平台上进行推理测试,并通过TensorRT加速推理,测得平均每帧图像的推理时间为77ms,可以实现实时检测的目标.  相似文献   

8.
绝缘子缺陷检测是电网巡检过程中重要的一环,为提高绝缘子缺陷检测的精度,该文提出一种基于改进YOLOv5算法的绝缘子缺陷检测算法——YOLOv5t,能够在保证网络运行速度的条件下,提升网络的检测精度.该算法在YOLOv5s的基础上,将三重注意力机制(triplet attention)添加到骨干网络中,给予每个特征通道不同的权重,以提高网络的检测精度;并采用CIoU Loss作为网络回归损失的损失函数,提升网络的收敛速度;同时将Soft-NMS作为网络的预测结果处理方法,降低网络的漏检率.YOLOv5t与几种常用的缺陷检测网络的对比实验结果表明,YOLOv5t的准确率达到97.2%,召回率达到98%,平均精度均值达到99.1%,较YOLOv5s算法分别提升了0.9%、5.1%和2.1%,并且检测速度没有受到影响.  相似文献   

9.
由于无人机航拍具有场景复杂多样,目标尺度变化剧烈,高速低空运动模糊等诸多特性,给目标检测带来了很大的挑战。针对无人机航拍目标检测效果不佳的问题,提出了Dy-YOLO模型,在YOLOv5的基础上引入Dynamic Head注意力,从尺度感知、空间位置、多任务3个角度探索具有注意力机制的预测头潜力;设计了C3-DCN结构和Dynamic Head注意力相互配合增强特征提取能力;此外,还使用SimOTA标签分配方式来弥补小样本的损失,并使用CARAFE(content-aware resssembly of features)上采样算子,有效增强了不同卷积特征图的融合效果。在VisDrone2019测试集上,Dy-YOLO检测的平均均值精度达到了38.2%,较基线方法YOLOv5提高了7.1%,同时与主流的检测方法相比也取得更高的检测精度。结果表明,Dy-YOLO算法对于无人机航拍检测任务具有较好的性能。  相似文献   

10.
蒲玲玲  杨柳 《科学技术与工程》2023,23(28):12159-12167
多车辆目标跟踪时间主要花费在车辆检测模块和对每个车辆表观特征提取模块,一般情况下,车辆检测和车辆表观特征提取是在不同的神经网络中进行的,且一张图中的车辆目标越多,对车辆表观特征提取耗费时间的也越多,推理时间也相应变长。针对这一问题,基于经典的Tracking-By-Detection模式,提出一种改进的YOLO模型:在YOLO网络中添加ReID特征识别模块,使YOLO在输出目标位置信息的同时输出目标特征信息,以提高算法的跟踪速度。针对车辆间彼此覆盖的情况,提出一种基于动态IOU阈值的非极大抑制算法,以提高算法的跟踪精度。最后将YOLO输出的信息进行数据匹配,从而实现多目标跟踪。在UA-DETRAC数据集上验证改进模型的有效性,实验结果表明,将YOLOv5网络进行改进后运用在目标跟踪算法中,相对于经典的YOLO+DeepSORT跟踪模型,在车辆密集的情景下平均推理时间减少了17%;在改进后的网络上添加动态IOU阈值非极大抑制,跟踪精度提高了3.9个百分点。改进后的模型有较好的实时性与跟踪准确率。  相似文献   

11.
根据以往钢铁表面缺陷检测技术的检测效能较低、准确性低的情况,提出一种改进YOLOv5s的钢材表面缺陷检测算法。主要改进为:加入坐标注意力机制(Coordinate Attention,CA)的空洞空间卷积池化金字塔 (Atrous Spatial Pyramid Pooling,ASPP),扩大模型感受野和多尺度感知能力的同时能更好的获取特征位置信息;加入改进的选择性内核注意力机制(Selective Kernel Attention,SK),使模型能更好的利用特征图中的频率信息,提升模型的表达能力;将损失函数替换为SIoU,提升模型性能的同时加快模型的收敛。实验数据表明,改进的YOLOv5s网络模型在NEU-DET数据集上的mAP值为78.13%,相比原网络模型提高了2.85%。改进的模型具有良好的检测型性能的同时检测速度为103.9 FPS,能够满足实际应用场景中钢材表面缺陷实时检测的需求。  相似文献   

12.
随着高新技术的发展,山火的监控、预警方式从过去以人工为主转换成图像、热成像等火焰识别的计算机处理,前者检测成本较高且监视范围小,同时存在环境背景杂乱,灯光、白云等与烟火混淆的因素导致检测误差大,预警延迟等问题。YOLO是基于深度学习的目标检测算法,它对收集到的多元烟火数据集进行以火焰、烟雾为研究对象的目标检测训练,能够得到烟火的自动识别检测模型,同时降低环境中检测混淆因子造成的影响使得分离烟火。对目标检测模型进行优化改进,使最后训练出的检测模型能够对图片或视频有更好的检测效果。  相似文献   

13.
针对个人防护用具安全帽的防护检测识别需求,现有的人工检测方法费时费力,无法做到实时监测.提出了一种基于YOLOv5s深度学习模型的安全帽检测算法,能够有效识别检测安全帽是否正确佩戴.并通过添加CA注意力机制,重新分配每个空间和通道的权重;以BoT3替代原有的C3模型,作为主干网络;并将CIOU损失函数改为SIOU等方法,改进原有的YOLOv5s模型,提高安全帽检测识别的精度,提高检测速度.实验结果表明,安全帽识别检测的平均精度比原始模型提高了2.2%,识别检测速度提升了19 ms,实现了更准确地轻量高效实时的安全帽佩戴检测.  相似文献   

14.
针对传统钢材表面缺陷检测方法存在检测效率低、检测精度差等问题,提出一种基于改进YOLOv5的钢材表面缺陷检测算法。首先使用GhostBottleneck结构替换原YOLOv5网络中的C3模块和部分卷积结构,实现网络模型轻量化;其次在Backbone部分引入SE注意力机制,对重要的特征通道进行强化;最后针对数据集特点在网络中增加一个检测层,强化特征提取能力,并在Neck部分增加特征融合结构,使用DW卷积替换部分标准卷积以减少运算量。实验表明,改进的YOLOv5sGSD算法,模型体积减少了10.4%,在测试集上的mAP值为76.8%,相比原YOLOv5s网络提高了3.3%,检测精度和速度也明显高于一些主流算法。相比传统的钢材表面缺陷检测方法,提出的算法能够更加准确、快速地检测出钢材表面缺陷的种类和位置,并且具有较小的模型体积,方便于在移动端的部署。  相似文献   

15.
针对密集行人检测中行人之间高度遮挡重叠所带来的精度低和漏检高的问题,提出一种单阶段密集行人检测方法Dense-YOLOv5。实验基于YOLOv5-L,首先使用改进的RepVGG模块来替代原有3×3卷积加强密集场景下特征信息的提取;然后在原有3个检测头的基础上添加1个检测头降低对小尺度行人的漏检;最后在网络特征融合阶段引入注意力机制,添加1个高效通道注意力(efficient channel attention,ECA)模块提高对有用信息定位的精度。实验结果表明:DenseYOLOv5相比原YOLOv5在CrowdHuman数据集上,在保证实时性的前提下,平均精度(AP)提高了3.6%,对数漏检率平均值(MR-2)降低了4.0%,证明了Dense-YOLOv方法在密集行人检测中的有效性。  相似文献   

16.
针对声纳图像中小目标检测识别率低、虚警率高的问题, 提出一种改进的 YOLOv3 算法. 改进的 YOLOv3 网络在原始 YOLOv3 的基础上进行优化, 改变网络的层级连接, 融合更浅层的特征与深层特征, 形成新的更大尺度的检测层, 提高了网络对水下小目标检测的能力; 同时, 使用线性缩放的 $K$-means 聚类算法优化计算先验框个数和宽高比, 提高了先验框与 ground truth box 之间的匹配度, 较原始 YOLOv3 算法均值平均精度提高了 7%. 实验结果表明, 所提出的改进 YOLOv3 算法能够有效分类与识别小目标且有更高的准确率和更低的虚警率, 同时保持了原始 YOLOv3 算法的实时性.  相似文献   

17.
针对当前朱鹮检测算法模型参数较多、计算量大的问题,本文设计研究了一种基于YOLOv5s的高性能轻量化网络模型。首先,结合EfficientNet网络中的MBConvBlock对原主干网络进行重构,大幅降低网络参数;同时在浅层网络中采用Stem模块,提升浅层网络的特征提取能力;然后改进卷积注意力模块(CBAM),即将其中的通道注意力替换为高效通道注意力模块(ECA),避免了降维操作,有效提取了邻近通道间的信息,且大幅降低了通道注意力的参数数量,并将其嵌入特征融合网络路径聚合网络(PANet)中,达到了引入微小参数数量而有效提升网络性能的目的,并将其命名为高效卷积注意力模块(ECBAM)。最后,在自建朱鹮数据集和公共数据集PASCAL VOC、COCO上进行实验,实验结果表明,与YOLOv5s算法相比,本文算法模型参数数量降低了52.37%,计算次数降低了54.55%,在自建朱鹮数据集上PmAP@0.5:0.95仅降低了约2个百分点,达到0.666,在公共数据集PASCAL VOC上PmAP@0.5达到0.792,在公共数据集COCO上P  相似文献   

18.
深度学习技术在目标检测领域取得了显著的成果,但是相关模型在样本量不足的条件下难以发挥作用,借助小样本学习技术可以解决这一问题。本文提出一种新的小样本目标检测模型。首先,设计了一种特征学习器,由Swin Transformer模块和PANET模块组成,从查询集中提取包含全局信息的多尺度元特征,以检测新的类对象。其次,设计了一种权重调整模块,将支持集转换为一个具有类属性的权重系数,为检测新的类对象调整元特征分布。最后在ImageNet-LOC、PASCAL VOC和COCO三种数据集上进行实验分析,结果表明本文提出的模型在平均精度、平均召回率指标上相对于现有的先进模型都有了显著的提高。  相似文献   

19.
针对自动驾驶场景下车载鱼眼相机采集到的图像存在畸变严重、场景复杂、尺度变化剧烈、小目标多以及传统的目标检测模型的检测精度不高的问题,提出了一种基于YOLOv5s改进的鱼眼图像检测模型YOLOv5s-R.首先,为解决小目标难识别的问题,提出随机裁剪多尺度训练的数据增强方法,该方法优于消融实验所得的最优数据增强方法.其次,为了提高模型的检测精度,在网络头部添加置换注意力机制与轻量化解耦头,增强模型对特征的提取能力与识别能力,并抑制噪声干扰.最后,模型额外增加角度预测项,实现旋转框目标检测.通过构建环形标签并用高斯函数对标签平滑,解决了旋转框角度的周期性问题;又对损失函数进行了优化,提出了RIOU,在CIOU的基础上增加角度惩罚项,提高了回归精度并加快了模型的收敛.实验结果表明,提出的YOLOv5s-R模型在WoodScape数据集上取得良好的检测效果,相比于原始的YOLOv5s模型,mAP@0.5、mAP@0.5∶0.95分别提升了6.8%、5.6%,达到82.6%、49.5%.  相似文献   

20.
针对公路上高速行驶的车辆检测常常存在错检、漏检的问题,对YOLOv4算法进行改进优化.首先,将CSPDarknet53-tiny作为主干特征提取网络,并对网络中的ResBolck_body模块中的残差边与GhostModule模块结合代替原始特征网络CSPDarknet53,从而简化网络结构,同时提高其检测精度;然后,将原算法中的SPPNet模块结构替换为ASPPNet,增大网络感受野,降低参数计算量,使模型能够在保持精准度的同时更加轻量化;最后,将注意力机制模块SENet结构嵌入特征金字塔PANet的两个不同位置,使其可对不同重要程度的特征进行相应处理.在BDD100K数据集实验中,原YOLOv4算法训练后得到的模型的平均精度(AP)为88.27%,改进优化后的YOLOv4模型AP为90.96%,改进后的YOLOv4算法相比原算法AP提高了2.69%.在实际真实场景数据集实验中,改进优化后的YOLOv4算法比原算法AP提高了3.31%.实验结果表明,本文提出的方法可以有效提高YOLOv4算法对车辆目标检测的精度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号