首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
E L Ferguson  P W Sternberg  H R Horvitz 《Nature》1987,326(6110):259-267
Twenty-three genes have been assigned to particular steps in a genetic pathway for the specification of the vulval cell lineages of the nematode Caenorhabditis elegans. Mutations in most of these genes cause homoeotic transformations in the fates of individual cells, suggesting that these lineages may be specified by a series of decisions that distinguish between alternative cell fates. Fifteen of the genes function in a system involved in the intracellular response to the extracellular signal that induces vulval formation.  相似文献   

3.
4.
Wang D  Kennedy S  Conte D  Kim JK  Gabel HW  Kamath RS  Mello CC  Ruvkun G 《Nature》2005,436(7050):593-597
Caenorhabditis elegans homologues of the retinoblastoma (Rb) tumour suppressor complex specify cell lineage during development. Here we show that mutations in Rb pathway components enhance RNA interference (RNAi) and cause somatic cells to express genes and elaborate perinuclear structures normally limited to germline-specific P granules. Furthermore, particular gene inactivations that disrupt RNAi reverse the cell lineage transformations of Rb pathway mutants. These findings suggest that mutations in Rb pathway components cause cells to revert to patterns of gene expression normally restricted to germ cells. Rb may act by a similar mechanism to transform mammalian cells.  相似文献   

5.
DP Denning  V Hatch  HR Horvitz 《Nature》2012,488(7410):226-230
The elimination of unnecessary or defective cells from metazoans occurs during normal development and tissue homeostasis, as well as in response to infection or cellular damage. Although many cells are removed through caspase-mediated apoptosis followed by phagocytosis by engulfing cells, other mechanisms of cell elimination occur, including the extrusion of cells from epithelia through a poorly understood, possibly caspase-independent, process. Here we identify a mechanism of cell extrusion that is caspase independent and that can eliminate a subset of the Caenorhabditis elegans cells programmed to die during embryonic development. In wild-type animals, these cells die soon after their generation through caspase-mediated apoptosis. However, in mutants lacking all four C. elegans caspase genes, these cells are eliminated by being extruded from the developing embryo into the extra-embryonic space of the egg. The shed cells show apoptosis-like cytological and morphological characteristics, indicating that apoptosis can occur in the absence of caspases in C. elegans. We describe a kinase pathway required for cell extrusion involving PAR-4, STRD-1 and MOP-25.1/-25.2, the C. elegans homologues of the mammalian tumour-suppressor kinase LKB1 and its binding partners STRADα and MO25α. The AMPK-related kinase PIG-1, a possible target of the PAR-4–STRD-1–MOP-25 kinase complex, is also required for cell shedding. PIG-1 promotes shed-cell detachment by preventing the cell-surface expression of cell-adhesion molecules. Our findings reveal a mechanism for apoptotic cell elimination that is fundamentally distinct from that of canonical programmed cell death.  相似文献   

6.
Mitochondrial endonuclease G is important for apoptosis in C. elegans.   总被引:10,自引:0,他引:10  
J Parrish  L Li  K Klotz  D Ledwich  X Wang  D Xue 《Nature》2001,412(6842):90-94
Programmed cell death (apoptosis) is a tightly regulated process of cell disassembly in which dying cells and their nuclei shrink and fragment and the chromosomal DNA is degraded into internucleosomal repeats. Here we report the characterization of the cps-6 gene, which appears to function downstream of, or in parallel to, the cell-death protease CED-3 of Caenorhabditis elegans in the DNA degradation process during apoptosis. cps-6 encodes a homologue of human mitochondrial endonuclease G, and its protein product similarly localizes to mitochondria in C. elegans. Reduction of cps-6 activity caused by a genetic mutation or RNA-mediated interference (RNAi) affects normal DNA degradation, as revealed by increased staining in a TUNEL assay, and results in delayed appearance of cell corpses during development in C. elegans. This observation provides in vivo evidence that the DNA degradation process is important for proper progression of apoptosis. CPS-6 is the first mitochondrial protein identified to be involved in programmed cell death in C. elegans, underscoring the conserved and important role of mitochondria in the execution of apoptosis.  相似文献   

7.
A mutation that changes cell movement and cell fate in the zebrafish embryo   总被引:13,自引:0,他引:13  
C B Kimmel  D A Kane  C Walker  R M Warga  M B Rothman 《Nature》1989,337(6205):358-362
The study of developmental patterning has been facilitated by the availability of mutations that produce changes in cell fate, in animals such as Caenorhabditis elegans and Drosophila melanogaster. We now describe a zygotic lethal mutation in the zebrafish, Brachydanio rerio, that also changes how particular embryonic cells develop. Severe pattern deficiencies are observed that are restricted to a single body region, the trunk. The mutation may directly affect mesoderm, as somites do not form in the trunk. Head and tail structures, including tail somites, are relatively undisturbed. The earliest detected expression of the mutation is during gastrulation, when movements of mesodermal cells occur incorrectly. We injected prospective trunk mesodermal cells with lineage tracer dye and observed that in mutants these cells may enter a new body region, the tail, and there may express a new fate appropriate for the changed position.  相似文献   

8.
Zhong W  Feng H  Santiago FE  Kipreos ET 《Nature》2003,423(6942):885-889
To maintain genome stability, DNA replication is strictly regulated to occur only once per cell cycle. In eukaryotes, the presence of 'licensing proteins' at replication origins during the G1 cell-cycle phase allows the formation of the pre-replicative complex. The removal of licensing proteins from chromatin during the S phase ensures that origins fire only once per cell cycle. Here we show that the CUL-4 ubiquitin ligase temporally restricts DNA-replication licensing in Caenorhabditis elegans. Inactivation of CUL-4 causes massive DNA re-replication, producing cells with up to 100C DNA content. The C. elegans orthologue of the replication-licensing factor Cdt1 (refs 2, 3) is required for DNA replication. C. elegans CDT-1 is present in G1-phase nuclei but disappears as cells enter S phase. In cells lacking CUL-4, CDT-1 levels fail to decrease during S phase and instead remain constant in the re-replicating cells. Removal of one genomic copy of cdt-1 suppresses the cul-4 re-replication phenotype. We propose that CUL-4 prevents aberrant re-initiation of DNA replication, at least in part, by facilitating the degradation of CDT-1.  相似文献   

9.
Shaye DD  Greenwald I 《Nature》2002,420(6916):686-690
The coordination of signals from different pathways is important for cell fate specification during animal development. Here, we define a novel mode of crosstalk between the epidermal growth factor receptor/Ras/mitogen-activated protein kinase cascade and the LIN-12/Notch pathway during Caenorhabditis elegans vulval development. Six vulval precursor cells (VPCs) are initially equivalent but adopt different fates as a result of an inductive signal mediated by the Ras pathway and a lateral signal mediated by the LIN-12/Notch pathway. One consequence of activating Ras is a reduction of LIN-12 protein in P6.p (ref. 2), the VPC believed to be the source of the lateral signal. Here we identify a 'downregulation targeting signal' (DTS) in the LIN-12 intracellular domain, which encompasses a di-leucine-containing endocytic sorting motif. The DTS seems to be required for internalization of LIN-12, and on Ras activation it might mediate altered endocytic routing of LIN-12, leading to downregulation. We also show that if LIN-12 is stabilized in P6.p, lateral signalling is compromised, indicating that LIN-12 downregulation is important in the appropriate specification of cell fates in vivo.  相似文献   

10.
Li W  Feng Z  Sternberg PW  Xu XZ 《Nature》2006,440(7084):684-687
The nematode Caenorhabditis elegans is commonly used as a genetic model organism for dissecting integration of the sensory and motor systems. Despite extensive genetic and behavioural analyses that have led to the identification of many genes and neural circuits involved in regulating C. elegans locomotion behaviour, it remains unclear whether and how somatosensory feedback modulates motor output during locomotion. In particular, no stretch receptors have been identified in C. elegans, raising the issue of whether stretch-receptor-mediated proprioception is used by C. elegans to regulate its locomotion behaviour. Here we have characterized TRP-4, the C. elegans homologue of the mechanosensitive TRPN channel. We show that trp-4 mutant worms bend their body abnormally, exhibiting a body posture distinct from that of wild-type worms during locomotion, suggesting that TRP-4 is involved in stretch-receptor-mediated proprioception. We show that TRP-4 acts in a single neuron, DVA, to mediate its function in proprioception, and that the activity of DVA can be stimulated by body stretch. DVA both positively and negatively modulates locomotion, providing a unique mechanism whereby a single neuron can fine-tune motor activity. Thus, DVA represents a stretch receptor neuron that regulates sensory-motor integration during C. elegans locomotion.  相似文献   

11.
Jagasia R  Grote P  Westermann B  Conradt B 《Nature》2005,433(7027):754-760
Genetic analyses in Caenorhabditis elegans have been instrumental in the elucidation of the central cell-death machinery, which is conserved from C. elegans to mammals. One possible difference that has emerged is the role of mitochondria. By releasing cytochrome c, mitochondria are involved in the activation of caspases in mammals. However, there has previously been no evidence that mitochondria are involved in caspase activation in C. elegans. Here we show that mitochondria fragment in cells that normally undergo programmed cell death during C. elegans development. Mitochondrial fragmentation is induced by the BH3-only protein EGL-1 and can be blocked by mutations in the bcl-2-like gene ced-9, indicating that members of the Bcl-2 family might function in the regulation of mitochondrial fragmentation in apoptotic cells. Mitochondrial fragmentation is independent of CED-4/Apaf-1 and CED-3/caspase, indicating that it occurs before or simultaneously with their activation. Furthermore, DRP-1/dynamin-related protein, a key component of the mitochondrial fission machinery, is required and sufficient to induce mitochondrial fragmentation and programmed cell death during C. elegans development. These results assign an important role to mitochondria in the cell-death pathway in C. elegans.  相似文献   

12.
It has been generally accepted that the mammalian embryo starts its development with all cells identical, and only when inside and outside cells form do differences between cells first emerge. However, recent findings show that cells in the mouse embryo can differ in their developmental fate and potency as early as the four-cell stage. These differences depend on the orientation and order of the cleavage divisions that generated them. Because epigenetic marks are suggested to be involved in sustaining pluripotency, we considered that such developmental properties might be achieved through epigenetic mechanisms. Here we show that modification of histone H3, through the methylation of specific arginine residues, is correlated with cell fate and potency. Levels of H3 methylation at specific arginine residues are maximal in four-cell blastomeres that will contribute to the inner cell mass (ICM) and polar trophectoderm and undertake full development when combined together in chimaeras. Arginine methylation of H3 is minimal in cells whose progeny contributes more to the mural trophectoderm and that show compromised development when combined in chimaeras. This suggests that higher levels of H3 arginine methylation predispose blastomeres to contribute to the pluripotent cells of the ICM. We confirm this prediction by overexpressing the H3-specific arginine methyltransferase CARM1 in individual blastomeres and show that this directs their progeny to the ICM and results in a dramatic upregulation of Nanog and Sox2. Thus, our results identify specific histone modifications as the earliest known epigenetic marker contributing to development of ICM and show that manipulation of epigenetic information influences cell fate determination.  相似文献   

13.
Neuronal polarization occurs shortly after mitosis. In neurons differentiating in vitro, axon formation follows the segregation of growth-promoting activities to only one of the multiple neurites that form after mitosis. It is unresolved whether such spatial restriction makes use of an intrinsic program, like during C. elegans embryo polarization, or is extrinsic and cue-mediated, as in migratory cells. Here we show that in hippocampal neurons in vitro, the axon consistently arises from the neurite that develops first after mitosis. Centrosomes, the Golgi apparatus and endosomes cluster together close to the area where the first neurite will form, which is in turn opposite from the plane of the last mitotic division. We show that the polarized activities of these organelles are necessary and sufficient for neuronal polarization: (1) polarized microtubule polymerization and membrane transport precedes first neurite formation, (2) neurons with more than one centrosome sprout more than one axon and (3) suppression of centrosome-mediated functions precludes polarization. We conclude that asymmetric centrosome-mediated dynamics in the early post-mitotic stage instruct neuronal polarity, implying that pre-mitotic mechanisms with a role in division orientation may in turn participate in this event.  相似文献   

14.
15.
M Moos  R Tacke  H Scherer  D Teplow  K Früh  M Schachner 《Nature》1988,334(6184):701-703
Diverse glycoproteins of cell surfaces and extracellular matrices operationally termed 'adhesion molecules' are important in the specification of cell interactions during development, maintenance and regeneration of the nervous system. These adhesion molecules have distinct functions involving different cells at different developmental stages, but may cooperate when expressed together. Families of adhesion molecules which share common carbohydrate domains do exist, despite the structural and functional diversity of these glycoproteins. These include the Ca2+-independent neural adhesion molecules: N-CAM, myelin associated glycoprotein (MAG) and L1. L1 is involved in neuron-neuron adhesion, neurite fasciculation, outgrowth of neurites, cerebellar granule cell migration, neurite outgrowth on Schwann cells and interactions among epithelial cells of intestinal crypts. We show here that in addition to sharing carbohydrate epitopes with N-CAM and MAG, L1 is also a member of the immunoglobulin superfamily. It contains six C2 domains and also shares three type III domains with the extracellular matrix adhesion molecule fibronectin.  相似文献   

16.
Zhurov V  Terzin T  Grbić M 《Nature》2004,432(7018):764-769
Polyembryonic development is a unique mode of metazoan development in which a single zygote generates multiple embryos by clonal proliferation. The polyembryonic parasitic insect Copidosoma floridanum shows one of the most extreme cases of polyembryony, producing up to 2,000 embryos from a single egg. In addition, this wasp exhibits an unusual polyphenism, producing two morphologically distinct larval castes, termed precocious and reproductive, that develop clonally from the same zygote. This form of development seems incompatible with a model of insect development in which maternal pre-patterning of the egg specifies embryonic axial polarity. Here we show that maternal pre-patterning in the form of germ plasm creates cellular asymmetry at the four-cell stage embryo of Copidosoma that is perpetuated throughout development. Laser ablations of cells show that the cell inheriting the germ plasm regulates both the fate and proliferation of the reproductive caste. Thus, we have uncovered a new mechanism of caste specification, mediated by the regulatory capacity of a single cell. This study shows that the evolution of mammalian-like regulative development of an insect embryo relies on a novel cellular context that might ultimately enhance developmental plasticity.  相似文献   

17.
D J Hoeppner  M O Hengartner  R Schnabel 《Nature》2001,412(6843):202-206
Genetic studies have identified over a dozen genes that function in programmed cell death (apoptosis) in the nematode Caenorhabditis elegans. Although the ultimate effects on cell survival or engulfment of mutations in each cell death gene have been extensively described, much less is known about how these mutations affect the kinetics of death and engulfment, or the interactions between these two processes. We have used four-dimensional-Nomarski time-lapse video microscopy to follow in detail how cell death genes regulate the extent and kinetics of apoptotic cell death and removal in the early C. elegans embryo. Here we show that blocking engulfment enhances cell survival when cells are subjected to weak pro-apoptotic signals. Thus, genes that mediate corpse removal can also function to actively kill cells.  相似文献   

18.
Wallenfang MR  Seydoux G 《Nature》2000,408(6808):89-92
In Caenorhabditis elegans, polarity along the anterior-posterior (A/P) axis is established shortly after fertilization and is determined by the sperm, whose position specifies the posterior end of the embryo'. Although many factors required for the establishment of A/P polarity have been described, the nature of the spatial cue provided by the sperm remains unknown. Here we show that a microtubule-organizing centre is necessary and sufficient to establish several aspects of A/P polarity. In wildtype embryos, appearance of the first molecular asymmetries along the A/P axis correlates with and requires nucleation of microtubules by the sperm-derived centrosomes (sperm asters). In mutant embryos arrested in meiosis, sperm asters fail to form, and posterior is defined by the position of the persistent meiotic spindle rather than by the position of the sperm. Together, our data indicate that the primary spatial cue for A/P polarity in C. elegans derives from microtubules emanating from the sperm asters. Our findings support a parallel between C. elegans zygotes and other cells, such as Drosophila oocytes, which rely on microtubules to regulate polarity.  相似文献   

19.
Caenorhabditis elegans has scores of homoeobox-containing genes   总被引:19,自引:0,他引:19  
T R Bürglin  M Finney  A Coulson  G Ruvkun 《Nature》1989,341(6239):239-243
Homoeobox-containing genes control cell identities in particular spatial domains, cell lineages, or cell types during the development of Drosophila and Caenorhabditis elegans, and they probably control similar processes in vertebrates. More than 80 genes with homoeoboxes that have sequence similarities ranging from 25 to 100% have been isolated by genetic means or by DNA hybridization to previously isolated genes. We synthesized 500-2,000-fold degenerate oligonucleotides corresponding to a set of well-conserved eight amino acid sequences from the helix-3 region of the homoeodomain. We screened C. elegans genomic libraries with these probes and identified 49 putative homoeobox-containing loci. DNA sequencing confirmed that eight out of ten selected loci had sequences corresponding to the conserved helix-3 region plus additional flanking sequence similarity. One of these genes contained a sequence corresponding to a complete pou-domain and another was closely related to the homoeobox-containing genes caudal/cdx-1. The putative homoeobox loci were mapped to the physical contig map of C. elegans, allowing the identification of potentially corresponding genes from the correlated genetic map. We estimate that the number of homoeobox-containing genes in C. elegans is at least 60, constituting approximately 1% of the estimated total number of genes.  相似文献   

20.
Caenorhabditis elegans gene ced-9 protects cells from programmed cell death.   总被引:32,自引:0,他引:32  
M O Hengartner  R E Ellis  H R Horvitz 《Nature》1992,356(6369):494-499
The gene ced-9 of the nematode Caenorhabditis elegans acts to protect cells from programmed cell death. A mutation that abnormally activates ced-9 prevents the cell deaths that occur during normal C. elegans development. Conversely, mutations that inactivate ced-9 cause cells that normally live to undergo programmed cell death; these mutations result in embryonic lethality, indicating that ced-9 function is essential for development. The ced-9 gene functions by negatively regulating the activities of other genes that are required for the process of programmed cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号