共查询到19条相似文献,搜索用时 78 毫秒
1.
为了解决分布式词表示方法因忽略词语情感信息导致情感分类准确率较低的问题,提出了一种融入情感信息加权词向量的情感分析改进方法。依据专属领域情感词典构建方法,结合词典和语义规则,将情感信息融入到TF-IDF算法中,利用Word2vec模型得到加权词向量表示方法,并运用此方法对采集到的河北省旅游景点的评论文本与对照组进行对比实验。结果表明,与基于分布式词向量表示的情感分析方法相比,采用融入情感信息加权词向量的改进方法进行情感分析,积极文本的准确率提高了6.1%,召回率提高了6.6%,F值达到了90.3%;消极评论文本的准确率提高了6.0%,召回率提高了7.2%,F值达到了89.6%。因此,融入情感信息加权词向量的情感分析改进方法可以有效提高评论文本情感分析的准确率,为用户获得更为准确的评论观点提供参考。 相似文献
2.
目前的神经网络一般只将词粒度层面的词向量作为输入,忽略了语义层面的全局语义特征.针对此问题,提出了一种基于局部特征和全局特征融合的情感分类方法,以解决评论特征稀疏和主题聚焦性差的问题.对于局部特征,选择基于情感词典和BiLSTM神经网络模型提取基于词向量的文本特征.对于文本集的全局主题特征,采用神经主题模型提取文本主题特征,并将其作为全局特征来表示短文本信息.最终将基于局部加权词向量的文本特征和基于神经主题模型的文本主题特征进行拼接,并通过Softmax层输出,完成文本情感分类.结果表明:融合全局主题语义和局部加权词向量可以更加丰富神经网络的特征,从而有效地提高情感分类的准确率. 相似文献
3.
为了辨别在线评论的情感倾向,了解大众舆情对某一事件或产品的看法,采用层叠CRFs模型,把在线评论语句进行主客观分类、极性分类以及评论语句的褒贬强度分类,充分利用极性分类和褒贬强度分类之间的层次关系来改善情感分类的冗余关系,以期借助改进的条件随机场模型实现文本情感倾向及强度的分析,实现篇章级文本集的情感分析. 相似文献
4.
基于词向量的情感新词发现方法 总被引:1,自引:0,他引:1
词语级的情感倾向性分析一直是文本情感计算领域的热点研究方向,如何自动识别情感新词,并判断其情感倾向性已经成为当前亟待解决的问题。首先用基于统计量的方法识别微博语料中的新词,然后利用神经网络去训练语料中词语的词向量,从语料自身挖掘出词与词之间的相关性,最后提出了基于词向量的情感新词发现方法。实验表明该方法可以有效应用于情感新词发现。 相似文献
5.
钟泉 《安徽理工大学学报(自然科学版)》2019,39(1)
手机的普及为生活带来便利,但由于品牌多、定位不同等导致消费者难以快速准确的选择合适的机型。为解决这个问题,提出了一种基于在线评论情感分析的手机推荐方法,用于帮助消费者寻找符合购买意愿的手机。首先,集成基础情感词典,构建程度副词、否定词、手机领域评论用语等相关词典,再根据消费者需求对手机各项参数进行多属性组合,并计算每条手机评论的情感值,将评论文本的情感模糊值转换为准确值,最后结合手机属性和评论的情感值定义特征矩阵,进而使用余弦相似度的方法得到top-k款与消费者需求相似的手机推荐给用户。对比传统的使用单一情感词典的推荐方法,结果表明该推荐方法能够有效的提高推荐结果的采纳度。 相似文献
6.
通过基于领域词典的情感分析法,从用户生成的内容中更为准确地分析其情感状态,为民宿业提供一种新的研究视角。以贵阳民宿评论为研究样本,采用SO-PMI算法完成领域词典的构建,并借助LDA主题模型和可视化技术对用户评论进行情感分析。研究发现,构建的领域词典相较基础情感词典而言,性能上得到提升,尤其在负面评论方面,准确率、召回率上分别提升了17%和16%。同时结合LDA主题挖掘,详尽分析民宿评论中的正负面主题并分析其内在原因,这能为民宿管理者做出更好的决策提供数据支持和理论支撑。 相似文献
7.
针对LDA(Latent Dirichlet Allocation)主题模型生成的大量topic,很大部分topic内部词语相关度很低,可解释性差,对语言模型后的应用效果带来一定的影响.针对这一问题,该文提出了一种基于主题加权LDA模型的情感分类方法,该模型实现不同主题中内部相关的词语特征加权计算,能够消除不同主题内具有相关度词语的相互影响.实验结果表明,与传统LDA模型分类方法对比,该文提出的基于主题加权LDA模型的情感分类方法平均F1值提高了6.7%~8.1%,验证了该文提出的方法是有效的,提高了分类效果. 相似文献
8.
针对在线医疗评论文本长度短、语义稀疏的特点,提出一种基于词共现分析的在线医疗评论主题挖掘模型。应用于短文本的BTM主题模型在词对的选择过程中缺少对词语语义相关性的考虑,通过引入词共现分析计算语义相关性,设定阈值筛选参与训练的词对,进行医疗评论主题挖掘,基于主题一致性TC值和JS散度对比改进的COA-BTM主题模型与传统的BTM主题模型和LDA主题模型在医疗评论主题挖掘中的效果。实验结果表明改进的COA-BTM模型在主题一致性和主题质量上均具有更好的效果,证明了其在在线医疗评论挖掘领域的有效性。基于改进算法在医疗评论主题挖掘中的应用和SERVQUAL模型,更全面地识别了医疗服务质量影响因素。 相似文献
9.
淡旺季游客数量波动是制约景区健康平稳发展的重要因素,过于集中的客流量对资源管理和环境保护有巨大压力,严重影响游客的体验。针对该问题,通过网络数据获取技术,提出一种基于旅游在线评论人流量监控技术新方法,并基于词向量实现评论的主题提取和基于情感词典实现在线评论数据的情感分类,从而获得关于主题的游客满意度的监测。最后利用该方法实现人流量驱动的景区门票浮动制实施的监控和测评,通过秦始皇兵马俑浮动制实施前后对比、三亚和鼓浪屿相似景点对照实验可视化结果表明,门票浮动制具有稳定人流量优势,同时提升游客体验。该方法的提出有助于决策者了解景区运行状况和浮动制的检验,可为门票浮动制的科学执行提供有效依据。 相似文献
10.
针对标准卷积神经网络在文本情感分析过程中忽略了句子的整体结构信息的缺陷,本次研究在卷积神经网络的输入端加入注意力机制,提出了基于双通道输入的分段池化卷积神经网络模型(AF_CNN模型),该模型既能够有效提取文本局部最优特征,又能够捕捉到上下文词语之间的相关性。针对体育新闻评论情感分析的实验结果表明,与标准的卷积神经网络模型相比,本次研究提出的AF_CNN模型在分类准确率、召回率和F_1值等评价指标上,分别提升了3.40%,0.47%,1.96%。 相似文献
11.
对利用主题模型挖掘医疗服务主题进行了深入研究,针对LDA主题模型用于医疗评论主题挖掘中存在的语义稀疏、共现信息不足等问题,提出一种基于词共现分析与LDA主题模型结合的CO-LDA模型.首先使用词共现分析方法对评论语料库进行分析,得到词共现矩阵.其次利用LDA主题模型对语料评论进行建模表示,挖掘出患者对医疗服务的关注点.基于平均最小JS距离、平均肯德尔等级相关系数τb及平均TF-IDF 3个指标对比CO-LDA模型与传统LDA模型在医疗评论主题挖掘中的应用效果,实验最终表明CO-LDA模型识别主题的一致性和主题质量优于LDA模型.将实验结果与中国《医院评价标准》进行对比,一致性较高,说明基于CO-LDA的在线医疗评论主题挖掘方法的有效性. 相似文献
12.
准确分类电商平台中用户评论所包含的多个方面的情感极性,能够提升购买决策的有效性。为此,提出一种融合ChineseBERT和双向注意力流(Bidirectional Attention Flow,BiDAF)的中文商品评论方面情感分析模型。首先,通过融合拼音与字形的ChineseBERT预训练语言模型获得评论文本和方面文本的词嵌入,并采用从位置编码和内存压缩注意力两个方面改进的Transformer来表征评论文本和方面文本的语义信息。然后,使用双向注意力流学习评论文本与方面文本的关系,找出评论文本和方面文本中关键信息所对应的词语。最后,将Transformer和双向注意力流的输出同时输入到多层感知机(Multilayer Perceptron,MLP)中,进行信息级联和情感极性的分类输出。测试结果表明,提出的模型在两个数据集上的准确率分别为82.90%和71.08%,F1分数分别为82.81%和70.98%。 相似文献
13.
针对传统在线评论情感分类忽视了用户个性化的问题,提出了一种融合用户个性化特征的在线评论情感分类(PORSC)方法,该方法为每一类型用户构建一个在线评论情感分类器.PORSC模型由2部分构成:一部分是具有学习评论中常见情感信息的全局情感分类模型;另一部分是能捕捉每种类型用户的个性化特征的特定用户类型分类模型.为解决PORSC模型在训练中的数据稀疏问题,引入多任务学习方法,以协同方式训练分类器,以并行方式解决了PORSC模型中参数的优化问题.通过在2个实际中文产品评论数据集和一个公开的英文评论数据集上实验,并与已有基线方法进行比较与综合分析,结果表明PORSC模型在一定程度上提高了在线评论情感分类的精度. 相似文献
14.
随着电子商务的发展,在线评论已成为企业分析其产品竞争力的重要数据资源.通过评论文本提取消费者最关注的产品特征维度,采用情感词典法对评论文本进行情感分析得到特征-情感分数对.计算特征维度的重要度和满意度以确定特征维度的机会得分,并绘制机会景观图,分析目标产品自身的竞争力.依据特征维度的满意度,比较目标产品与其竞争产品的竞... 相似文献
15.
针对网络在线产品评论,利用Apriori算法从在线产品评论中挖掘出产品的热门属性,提取情感词汇并确定词汇和属性的搭配关系;对情感词汇进行模糊化表示,通过构建产品属性与推荐度的模糊推理规则,实现个性化产品推荐计算.以京东商城网站手机产品评论为例进行了实际计算,结果表明,该方法较传统的按销量排序方法更具个性化和针对性. 相似文献
16.
通过对旅游网站的景点评论进行情感分析,综合利用自然语言处理技术和领域本体构建技术,准确把握游客对旅游目的地的满意度和需求;将群体智慧和个人偏好有效地结合,为游客出行制定合理的个性化推荐策略.实验结果表明:所提出的推荐策略能够有效地将碎片化的游客评论数据转化为对其他游客出行地选择的辅助信息,提高了游客获取旅游知识的效率,真实地反映游客的旅游感受,为游客景点选择提供参考. 相似文献
17.
针对传统支持向量机对噪声或野值样本敏感和忽略样本各个特征对分类精度的不同影响,提出了一种具有特征有效度的模糊支持向量机(FW-FSVM).该方法通过对模糊支持向量机的模糊因子进行改进,将噪声或野值样本与有效样本进行区分.在此基础上根据信息增益计算样本各个特征的特征有效度,消除弱相关特征和冗余特征对分类精度的影响,从而构... 相似文献
18.
基于领域知识和词向量的词义消歧方法 总被引:3,自引:0,他引:3
利用无标注文本构建词向量模型,结合特定领域的关键词信息,提出一种词义消歧方法。以环境领域的待消歧文本作为评测语料,通过与Lesk等其他消歧方法进行比较,证明了所提方法的有效性。通过引入不同的领域知识,证明该方法亦可在其他领域的文本消歧任务中加以应用。 相似文献
19.
为解决现有情感分类算法在特征提取中缺乏对语义关联规则的运用,以及在分词后产生大量与情感预测无关的词,导致挖掘出的特征不具代表性的问题。提出一种融合粗糙数据推理的卷积记忆网络情感分析模型。首先,通过上下文信息使用粗糙数据推理获得文本的情感词集Word2Vec词向量表示,并融合FastText词向量来改进特征向量嵌入层;其次,使用卷积神经网络(convolutional neural network, CNN)拼接双向长短期记忆网络(bi-directional long short-term memory, BiLSTM)提取更深层次的情感特征;最后,加入Attention机制计算权重,筛选显著重要特征。在两个数据集上的实验结果显示,该模型的情感分类准确率与F1值最高可达到84.66%和85.1%,较基线模型中的最高值分别高出2.04%和3.1%,有效提升了情感分类的预测能力。 相似文献