首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 410 毫秒
1.
基于动态隧道系统的K-means聚类算法研究   总被引:1,自引:0,他引:1  
针对K-means聚类算法易陷入局部极小的问题,利用动态隧道算法在解决全局最优化问题中的有效性,将算法中的动态隧道过程引入到K-means聚类算法中,提出了一种基于动态隧道算法的K-means聚类算法.该算法在K-means聚类算法寻优得到的局部极小值基础上,利用动态隧道过程寻找更小的能量盆地,再将其值提交给K-means聚类算法进行迭代寻优,重复该过程,直到找到全局最小值.理论分析和仿真实验证明,该算法的聚类效果要优于K-means聚类算法.  相似文献   

2.
传统K-means 算法对于聚类初始点的选取和距离度量的计算异常敏感,因而很可能导致K-means 算法只能收敛得到局部最优解。为此,提出一种改进的K-means 算法,即K-means 聚类算法最优匹配算法,并进行了相关的算法实验分析。该改进算法首先对传统的K-means 聚类算法进行初始点的选取,并分析聚类结果。然后,分别从初始聚类中心的选择和距离算法的确定进行实验测试,引入轮廓系数评价聚类效果,分析实验结果可知,K-means 聚类算法最优匹配算法具有较好的稳定性和较高的聚类准确率。  相似文献   

3.
为了解决K-means算法在随机初始化过程中影响到K-means算法的效率性和正确性问题.提出了一种改进的方法(IKM),该方法是一种改进K均值的算法,利用密度、网格和统计等概念,将IKM的模拟数据与K-means进行比较.结果证明IKM的效率性和正确性优于K-means算法,对于复杂的情况在数据分布方面,IKM的表现优于K-means算法.  相似文献   

4.
为解决传统 K-means 算法中因初始聚类中心选择不当而导致聚类结果陷入局部极值的问题, 采用蝙蝠算法搜寻 K-means 算法的初始聚类中心, 并将模拟退火的思想和基于排挤的小生境技术引入到蝙蝠算法中, 以克服原始蝙蝠算法存在后期收敛速度慢、 搜索力不强等问题。 同时, 通过测试函数验证了其有效性。 最后利用改进后的蝙蝠算法优化 K-means 算法的初始聚类中心, 并将该改进的算法与传统的 K-means 算法的聚类结果进行了对比。 实验结果表明, 改进后的算法的聚类性能比传统的 K-means 算法有很大提高。  相似文献   

5.
一种改进的K一均值聚类算法   总被引:2,自引:0,他引:2  
为了改进K-means聚类算法的不足,把混合粒子群优化算法引入到K-means聚类算法中,重新选取编码方式并构造适应度函数,在此基础上提出了一种改进的K-means聚类算法;通过两个经典数据集的测试,实验结果表明:改进的算法比K-means算法具有更好的全局寻优能力、更快的收敛速度,且其解的精度更高对初始聚类中心的敏感度降低.  相似文献   

6.
将K-means聚类算法在对事物分类中的优点用于判断变压器的故障中.并针对K-means聚类法在给定初始聚类中心不良的问题上进行改进.将改进的K-means聚类算法与三比值法相结合,以此来诊断变压器的多种常见故障.应用MATLAB分别对改进前后的K-means算法进行仿真,并将改进后的仿真结果同改进前K-means聚类算法的结果进行对比分析.结果表明,改进的K-means聚类算法不但能精确、有效地对变压器故障进行诊断,并且改进的K-means聚类法使仿真结果更加准确可靠.  相似文献   

7.
给出了K-means算法和层次聚类算法在具体网站用户细分中准确率的比较,在细分网站用户这一类问题中,K-means算法在聚类准确率和处理速度上具有较大的优势,能够满足网站用户细分准确率的基本要求,其聚类准确率达到95%左右,且K-means算法处理速度比较快;层次聚类算法的处理速度较K-means算法慢,且其聚类准确率在处理大量用户数据时低于92%,这对于处理网站用户数据这类信息并不具备优势.  相似文献   

8.
一种本体学习模型的设计与实现   总被引:3,自引:0,他引:3  
提出一种本体学习模型,分析了模型实现中的关键步骤.采用机器学习技术半自动地构建本体,用Bisecting K-means算法和标准的K-means算法对模型进行了测试.实验结果表明,Bisecting K-means算法产生的本体概念的层次更加精炼,时间复杂度较小,特别适合用于处理大型数据集.  相似文献   

9.
基于工业领域广泛用到的Hadoop分布式计算平台,使用Canopy+K-means算法对手写数字进行聚类研究.针对传统Canopy算法初始阈值的确定问题,引入"最大最小化原则"确定初始阈值,计算得到K-means算法所需的初始聚类中心点.实验结果表明,Canopy算法能够较大程度地提高K-means算法的正确率.  相似文献   

10.
为提高K-means算法全局搜索能力,提升聚类效果,提出一种基于近似骨架和混合蛙跳算法的K-means方法。该方法首先利用经典的混合蛙跳算法取代K-means算法中原有迭代公式,获得更优秀的聚类结果;然后对获得的聚类结果,使用基于近似骨架和混合蛙跳算法的K-means算法不寻找聚类中心,而是直接对簇的划分进行修改。UCI数据集实验结果表明,使用改进的聚类算法获得的聚类结果,较其他算法结果更为优秀。最后将改进后的聚类算法应用到医学眼底病历图像中,可以得到较好的血管切割效果。  相似文献   

11.
针对K-均值聚类算法存在的不足,提出了一种新的整合粒子群优化算法(PSO)和K-均值算法的聚类算法.在新算法中,首先结合使用粒子群优化算法和K-均值算法搜索全局最优解的位置,然后再用K-均值算法在全局最优解附近的局部空间内快速寻找最优聚类中心.通过对4个数据集的实验测试,将此算法与K-均值算法、基于粒子群的K-均值算法进行了比较.实验结果表明,新算法的聚类质量比后两个算法更优.  相似文献   

12.
为了解决传统K均值算法在处理大规模数据时的局限性,在近似K均值算法(AKM)基础之上,利用对聚类中心进行分类的思想,提出了快速近似K均值算法(FAKM).该算法舍去了在AKM聚类结果中只获得少数样本的聚类中心,并充分利用类内样本密集稳定的聚类中心,使得迭代过程中待聚类样本数和类别数逐步减少,达到了提高算法速度及精简聚类结果的目的.将FAKM算法运用于实际的图像检索系统中,实验结果表明,系统在检索准确率、检索时间和聚类时间方面都得到了很好的改善.  相似文献   

13.
基于K均值的带变异粒子群聚类算法   总被引:1,自引:0,他引:1  
针对K均值算法的搜索结果依赖于初始聚类中心以及粒子群算法早熟收敛的缺点,提出了一种基于K均值的带变异粒子群聚类算法.该算法通过粒子群算法来弥补K均值算法的不足,根据粒子的收敛情况判断K均值操作的时机,提高了搜索性能,并采用变异操作来跳出局部极值.分别用K均值算法、PSO-K均值算法和该算法对3种实际数据进行了聚类测试,...  相似文献   

14.
基于改进K-均值聚类的图像分割算法研究   总被引:3,自引:0,他引:3  
为了实现彩色图像的准确分割,研究了在HLS颜色空间中基于优化初始中心的加权K-均值彩色图像聚类算法.首先对大样本的目标颜色进行数理统计,获取优化的初始聚类中心,从而实现准确分类和避免K-均值容易陷入局部最优的问题;然后在HLS颜色空间中引入加权欧氏距离来度量对象间的相关性,通过调整系数使对象不同的颜色属性内在特征得以充分利用.实验证明,该算法在保持K-均值聚类简洁、收敛速度快的同时能产生更好的聚类效果,实现彩色图像的快速准确分割.  相似文献   

15.
融合Sentence-BERT和LDA的评论文本主题识别(SBERT-LDA)方法,将LDA的主题数作为K-means算法中的k值,导致算法可解释性较差、主题一致性较低。为了解决上述问题,提出基于密度Canopy的SBERT-LDA优化方法(SBERT-LDA-DC),利用密度Canopy改进K-means算法。实验结果表明,提出的方法在一致性指标上要优于使用K-means以及K-means++对特征向量聚类的同类方法;与SBERT-LDA方法相比,在1 852条戏剧评论数据集上,一致性指标值提高了22.9%。因此,所提出的SBERT-LDA-DC方法是有效的,对产品或服务提供者更好地了解用户意见、完善自身产品或提升服务水平提供了新方法,具有较强的实际应用价值。  相似文献   

16.
鉴于以往的结构面产状分组方法常存在算法复杂、聚类精度差及分组效率低的不足,提出了一种新型的融合模拟退火算法及K-means聚类(SAK)的结构面分组算法,该算法简单易实现.利用模拟退火算法的退火原理,对K-means算法聚类的结构面分组结果进行优化,以期克服K-means算法易受初始聚类中心影响的缺陷.计算机模拟生成的结构面数据的分析表明,所提方法相较于传统K-means算法具有明显优势.将该方法应用于重庆市三环高速公路兴隆隧道实测结构面的分组中,并与已有方法进行对比.结果表明:该方法不仅聚类精度高,而且迭代速度也较快,具有较强的工程实用性.  相似文献   

17.
分析了K-means算法在GPU上实现并行计算的可能性,并在GTX8800 GT显卡上实现,研究了GPU的存储访问机制,在对数据进行合理组织基础上对算法进行改进,避免了存储体冲突的产生,提高了算法的健壮性.研究结果证明该方法在GPU上的并行运算速度明显快于CPU,加速比高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号