首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
推导并证明了一个高阶光滑函数,分析了其若干性能.结果表明:该函数具有比1~7阶光滑函数更好的逼近性能,为支持向量机的进一步研究提供了新的光滑函数.  相似文献   

2.
研究半监督支持向量机分类优化模型的非光滑问题。建立了光滑半监督支持向量机模型,采用广义三弯矩法导出零点二阶光滑的广义三次样条函数,并以此逼近半监督支持向量机优化中的非光滑部分。构造出基于上述样条函数的具有一阶光滑的半监督支持向量机,从而可以用优化中的光滑算法来求解该模型。分析了广义三次样条函数逼近对称铰链损失函数的逼近精度,证明了新模型的收敛性。数值实验显示新模型有较好的分类效果。  相似文献   

3.
支持向量机是近年来数据挖掘领域发展起来的一个新方法.对现有的四个光滑支持向量机进行了分析,研究了支持向量机的光滑与逼近的关系.数值实验结果表明,支持向量机在具有二阶光滑的条件下,分类效果随逼近精度的提高而改善.  相似文献   

4.
基于光滑化方法的支持向量回归算法   总被引:2,自引:0,他引:2  
支持向量机是在统计学习理论的基础上发展起来的新一代学习算法,由于其出色的泛化能力,在文本分类、手写识别、数据挖掘、生物信息学等领域中获得了较好的应用.提出了一种光滑支持向量回归算法,实验结果表明,它相对于其它回归训练方法有较快的收敛速度和较高的拟合精度.  相似文献   

5.
解回归问题通常采用平方损失函数,传统方法在函数类的选择上是一个难点。采用ε-不敏感损失函数,用光滑的支持向量机解回归问题。数值实验表明,只需选一个核函数就可较好地解决这个难点,使支持向量的个数明显少于样本点的个数,简化了回归函数的表达式,回避了传统回归方法选择函数类的困难。所以,光滑支持向量回归机是解决回归问题的一个有效方法。  相似文献   

6.
针对传统SVC方法在样本容量大时存在训练时间过长、精度不高等不足,建立了一种变量可分离的支持向量分类模型DCSVC及算法,并应用于随机函数生成数据分类学习及戈尾属植物数据集分类预测中,从理论与实践上证明了DCSVC算法优于传统SVC算法(分类正确率较高而且训练时间较短)。  相似文献   

7.
光滑支持向量机是目前的一个研究热点.牛顿-条件预优共轭梯度法Newton-PCG(Newtonpreconditioncd congugate gradient)是一种求解优化问题的更有效算法.列出了该算法用于求解光滑支持向量机的基本思想和基本步骤,还比较了原始牛顿法和牛顿-条件预优共轭梯度法的计算效率.结果表明,牛顿-条件预优共轭梯度法的计算效率明显高于原始牛顿法.  相似文献   

8.
基于样条函数的光滑支持向量机模型   总被引:1,自引:0,他引:1  
应用光滑函数改进支持向量机模型,得到无约束条件、可微的二次规划问题,从而可以采用快速的最优化算法求解光滑支持向量机模型.提出了一种广义三弯矩方法,用这个方法构造出新的五次样条光滑函数和七次样条光滑函数.证明了上述两个样条光滑函数的逼近精度均高于已有的各种光滑函数;基于上述两个样条函数的光滑支持向量机模型的收敛精度也高于已有的各种光滑支持向量机模型.  相似文献   

9.
针对光滑孪生支持向量机(smooth twin support vector machines,STWSVM)采用的Sigmoid光滑函数逼近精度低的问题,提出一种基于Newton-Armij o优化的多项式光滑孪生支持向量机(polynomial smooth twin support vector machines...  相似文献   

10.
支持向量机是数据挖掘的新方法。支持向量机所对应的优化问题解的二阶充分条件是研究其灵敏度分析的重要基础。很弱的假设对于作为其特例的线性可分支持向量机问题一定成立,线性可分支持向量机问题解一定具有强二阶充分条件的性质;在这个假设条件下,线性支持向量分类机问题的解具有二阶充分条件性质。研究表明线性支持向量分类机问题的解在很大程度上具有二阶充分条件的性质。  相似文献   

11.
用于分类的支持向量机   总被引:6,自引:0,他引:6  
支持向量机是20世纪90年代中期发展起来的机器学习技术,建立在结构风险最小化原理之上的支持向量机以其独有的优点吸引着广大研究者,该文着重于用于分类的支持向量机,对其基本原理与主要的训练算法进行介绍,并对其用途作了一定的探索.  相似文献   

12.
By utilizing hyperbolic tangent function,we constructed a novel hyperbolic tangent loss function to reduce the influences of outliers on support vector machine (SVM) classification problem.The new lass fuinction not only limits the maximal loss value of outliers but also is smooth.Hyperbolic tangent SVM (HTSVM) is then proposed based on the new loss function.The experimental results show that HTSVM reduces the effects of outliers and gives better generalization performance than the classical SVM on both artificial data and UCI data sets.Therefore,the proposed hyperbolic tangent loss faction and HTSVM are both effective.  相似文献   

13.
支持向量机研究与应用   总被引:8,自引:4,他引:8       下载免费PDF全文
支持向量机是在统计学习理论基础上发展起来的一种新的机器学习方法,同时也是到目前为止统计学习理论最成功的实现。支持向量机在模式识别、回归估计、函数逼近等领域有了广泛的应用。论述了支持向量机的研究、应用状况,指出了支持向量机研究和应用中待解决的一些问题和今后进一步的研究方向。  相似文献   

14.
将直觉模糊集的相关理论引入到最小二乘支持向量机中, 建立了直觉模糊最小二乘支持向量机的数学模型, 并对模型的求解过程进行推导. 为验证该算法的有效性, 在人工数据集和标准数据集上进行仿真实验. 实验结果表明, 直觉模糊最小二乘支持向量机算法可降低分类时样本中噪声和野点对分类效果的影响.  相似文献   

15.
从降低时间和空间复杂度的角度出发,针对支持向量机的增量学习问题展开了研究,描述并比较了目前研究与应用较多的几种支持向量机增量学习算法,提出了一种基于壳向量的支持向量机渐进式增量学习算法,仿真实验结果表明:该算法在保证良好的分类精度的前提下,提高了学习效率.  相似文献   

16.
基于密度法的模糊支持向量机   总被引:13,自引:0,他引:13  
针对支持向量机对训练样本内的噪音和孤立点特别敏感、极大地影响了支持向量机分类性能的弱点,提出了一种基于密度法的模糊支持向量机,在支持向量机中引入样本密度模糊参数,从而减弱了噪音以及孤立点对支持向量机分类的影响.实验结果证明,在抗击孤立点和噪音点的干扰方面,上述方法优于类中心向量方法以及类中心点距离方法,取得了很好的效果.这一方法大大提高了支持向量机分类的泛化能力,从而大大提高了支持向量机的应用范围.  相似文献   

17.
直觉模糊支持向量机   总被引:2,自引:0,他引:2  
传统的模糊支持向量机难以区分具有相同隶属度的稀疏样本点和稠密样本点,进而可能降低分类精度.为了解决此类问题,利用直觉模糊集和模糊支持向量机,构建了直觉模糊支持向量机.仿真实验结果表明:与传统的支持向量机和模糊支持向量机相比,直觉模糊支持向量机的分类结果更精确.  相似文献   

18.
首先研究了基于向量空间模型的网站文本特征建模技术,同时根据实际网络的复杂程度和分类特点,采用支持向量机(support vector machine,SVM)来构造分类器。网站分类实验结果表明这种基于SVM的分类器具有模型简单、分类准确性较高等优点,具有较好的网站分类适用性。  相似文献   

19.
通过结合部分自适应弹性网络惩罚和hinge损失函数,提出了一种能同时进行微阵列分类和基因选择的自适应双正则化支持向量机模型,并证明了该支持向量机具有自适应群体基因选择性能.  相似文献   

20.
粒度支持向量机学习模型   总被引:4,自引:0,他引:4  
粒度支持向量机(Granular Support Vector Machine,GSVM)是以粒度计算理论和统计学习理论为基础的一种新的机器学习模型,它可以有效地克服传统支持向量机(Support Vector Machine,SVM)对于大规模数据集训练效率低下的问题,同时也可获得较好的泛化性能.文章针对原空间的GSVM模型进行了分析,提出了核空间的GSVM学习模型,在标准数据集上的实验说明了文中提出模型的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号