首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
One finds, in Maxwell's writings on thermodynamics and statistical physics, a conception of the nature of these subjects that differs in interesting ways from the way they are usually conceived. In particular, though—in agreement with the currently accepted view—Maxwell maintains that the second law of thermodynamics, as originally conceived, cannot be strictly true, the replacement he proposes is different from the version accepted by most physicists today. The modification of the second law accepted by most physicists is a probabilistic one: although statistical fluctuations will result in occasional spontaneous differences in temperature or pressure, there is no way to predictably and reliably harness these to produce large violations of the original version of the second law. Maxwell advocates a version of the second law that is strictly weaker; the validity of even this probabilistic version is of limited scope, limited to situations in which we are dealing with large numbers of molecules en masse and have no ability to manipulate individual molecules. Connected with this is his conception of the thermodynamic concepts of heat, work, and entropy; on the Maxwellian view, these are concept that must be relativized to the means we have available for gathering information about and manipulating physical systems. The Maxwellian view is one that deserves serious consideration in discussions of the foundation of statistical mechanics. It has relevance for the project of recovering thermodynamics from statistical mechanics because, in such a project, it matters which version of the second law we are trying to recover.  相似文献   

2.
It is generally accepted, following Landauer and Bennett, that the process of measurement involves no minimum entropy cost, but the erasure of information in resetting the memory register of a computer to zero requires dissipating heat into the environment. This thesis has been challenged recently in a two-part article by Earman and Norton. I review some relevant observations in the thermodynamics of computation and argue that Earman and Norton are mistaken: there is in principle no entropy cost to the acquisition of information, but the destruction of information does involve an irreducible entropy cost.  相似文献   

3.
4.
When considering controversial thermodynamic scenarios such as Maxwell's demon, it is often necessary to consider probabilistic mixtures of macrostates. This raises the question of how, if at all, to assign entropy to them. The information-theoretic entropy is often used in such cases; however, no general proof of the soundness of doing so has been given, and indeed some arguments against doing so have been presented. We offer a general proof of the applicability of the information-theoretic entropy to probabilistic mixtures of macrostates that is based upon a probabilistic generalisation of the Kelvin statement of the second law. We defend the latter and make clear the other assumptions on which our main result depends. We also briefly discuss the interpretation of our result.  相似文献   

5.
    
This paper investigates what the source of time asymmetry is in thermodynamics, and comments on the question whether a time-symmetric formulation of the Second Law is possible.  相似文献   

6.
This paper discusses the mistake of understanding the laws and concepts of thermodynamics too literally in the foundations of statistical mechanics. Arguing that this error is still made in subtle ways, the article explores its occurrence in three examples: the Second Law, the concept of equilibrium and the definition of phase transitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号