首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Selective hydroxylation of aromatic compounds is among the most challenging chemical reactions in synthetic chemistry and has gained steadily increasing attention during recent years, particularly because of the use of hydroxylated aromatics as precursors for pharmaceuticals. Biocatalytic oxygen transfer by isolated enzymes or whole microbial cells is an elegant and efficient way to achieve selective hydroxylation. This review gives an overview of the different enzymes and mechanisms used to introduce oxygen atoms into aromatic molecules using either dioxygen (O2) or hydrogen peroxide (H2O2) as oxygen donors or indirect pathways via free radical intermediates. In this context, the article deals with Rieske-type and α-keto acid-dependent dioxygenases, as well as different non-heme monooxygenases (di-iron, pterin, and flavin enzymes), tyrosinase, laccase, and hydroxyl radical generating systems. The main emphasis is on the heme-containing enzymes, cytochrome P450 monooxygenases and peroxidases, including novel extracellular heme-thiolate haloperoxidases (peroxygenases), which are functional hybrids of both types of heme-biocatalysts. Received 11 August, 2006; received after revision 28 September 2006; accepted 9 November 2006  相似文献   

2.
Ca2+/Calmodulin-dependent Protein Kinases   总被引:1,自引:0,他引:1  
In this article the calcium/calmodulin-dependent protein kinases are reviewed. The primary focus is on the structure and function of this diverse family of enzymes, and the elegant regulation of their activity. Structures are compared in order to highlight the conserved architecture of their catalytic domains with respect to each other as well as protein kinase A, a prototype for kinase structure. In addition to reviewing structure and function in these enzymes, the variety of biological processes for which they play a mediating role are also examined. Finally, how the enzymes become activated in the intracellular setting is considered by exploring the reciprocal interactions that exist between calcium binding to calmodulin when interacting with the CaM-kinases.  相似文献   

3.
Mast cell tryptase,a still enigmatic enzyme   总被引:2,自引:0,他引:2  
Tryptases constitute a subfamily of trypsin-like proteinases, stored in the mast cell secretory granules of all mammalian organisms. These enzymes are released along with other mediators into the extracellular medium upon mast cell activation/degranulation. Among the trypsin-like enzymes, tryptases are unique: they are present as active enzymes in the mast cell granules, but display activity only extracellularly, and have a specificity which is much more restricted than trypsin. Tryptases are mostly tetrameric, and in only few organisms (not in humans) are they inhibited by endogenous inhibitors in vitro. The enzymatic and molecular properties of tryptases are far better characterized that any of their plausible biological functions. On the basis of its structural and functional features it could be predicted that tryptase would not degrade a large number of proteins in vivo due to low accessibility to the tetramer central pore where the active sites face inwards. Although their biological function has not yet been clarified, tryptases seem to be involved in a number of mast cell-mediated allergic and inflammatory diseases. In particular, the involvement of tryptase in asthma, an inflammatory disease of the airways often caused by allergy, has been proposed. Here we review the present knowledge on the structure-function relationship of tryptases from different organisms, with special emphasis on human enzymes, and on their role in a variety of pathophsyiological processes.Received 29 October 2003; received after revision 3 December 2003; accepted 11 December 2003  相似文献   

4.
Multicopper oxidases (MCOs) are a pervasive family of enzymes that oxidize a wide range of phenolic and nonphenolic aromatic substrates, concomitantly with the reduction of dioxygen to water. MCOs are usually divided into two functional classes: metalloxidases and laccases. Given their broad substrate specificity and eco-friendliness (molecular oxygen from air as is used as the final electron acceptor and they only release water as byproduct), laccases are regarded as promising biological green tools for an array of applications. Among these laccases, those of bacterial origin have attracted research attention because of their notable advantages, including broad substrate spectrum, wide pH range, high thermostability, and tolerance to alkaline environments. This review aims to summarize the significant research efforts on the properties, mechanisms and structures, laccase-mediator systems, genetic engineering, immobilization, and biotechnological applications of the bacteria-source laccases and laccase-like enzymes, which principally include Bacillus laccases, actinomycetic laccases and some other species of bacterial laccases. In addition, these enzymes may offer tremendous potential for environmental and industrial applications.  相似文献   

5.
Microbes have a fascinating repertoire of bioenergetic enzymes and a huge variety of electron transport chains to cope with very different environmental conditions, such as different oxygen concentrations, different electron acceptors, pH and salinity. However, all these electron transport chains cover the redox span from NADH + H+ as the most negative donor to oxygen/H2O as the most positive acceptor or increments thereof. The redox range more negative than −320 mV has been largely ignored. Here, we have summarized the recent data that unraveled a novel ion-motive electron transport chain, the Rnf complex, that energetically couples the cellular ferredoxin to the pyridine nucleotide pool. The energetics of the complex and its biochemistry, as well as its evolution and cellular function in different microbes, is discussed.  相似文献   

6.
Cytochromes P450 and metabolism of xenobiotics   总被引:17,自引:0,他引:17  
Cytochromes P450 (henceforth P450s) are involved in a variety of metabolic and biosynthetic processes. The number of known P450 enzymes exceeds 1000, while the endogenous substrates of most of them remain unknown. All P450 enzymes exhibit similarity in their structure and general mechanism of action; however, there are significant differences in the detailed function of individual enzymes as well as in the structures and properties of their active sites. This review discusses the properties of the most important P450 enzymes taking part in drug metabolism in humans. P450 3A4 is of paramount importance, because it is the most abundant P450 in the human liver and is known to metabolize the majority of drugs whose biotransformation is known. Genetically dependent variabilities of individual P450 activities and levels are described, documenting the importance of pharmacogenetics aimed at explaining differences in the response of the organism to various drugs. Received 7 November 2000; received after revision 9 January 2001; accepted 10 January 2001  相似文献   

7.
The enoyl-acyl carrier protein reductase (ENR) is the last enzyme in the fatty acid elongation cycle. Unlike most enzymes in this essential pathway, ENR displays an unusual diversity among organisms. The growing interest in ENRs is mainly due to the fact that a variety of both synthetic and natural antibacterial compounds are shown to specifically target their activity. The primary anti-tuberculosis drug, isoniazid, and the broadly used antibacterial compound, triclosan, both target this enzyme. In this review, we discuss the diversity of ENRs, and their inhibitors in the light of current research progress. Received 3 November 2008; received after revision 5 December 2008; accepted 8 December 2008  相似文献   

8.
The TET enzymes     
During the past decade, we have learnt that the most common DNA modification, 5-methylcytosine (5mC), playing crucial roles in development and disease, is not stable but can be actively reversed to its unmodified form via enzymatic catalysis involving the TET enzymes. These ground-breaking discoveries have been achieved thanks to technological advances in the detection of the oxidized forms of 5mC and to the boldness of individual scientists. The TET enzymes require molecular oxygen for their catalysis, making them important targets for hypoxia research. They also require special cofactors which enable additional levels of regulation. Moreover, mutations and other genetic alterations in TETs are found, especially in myeloid malignances. This review focuses on the kinetic and inhibitory properties of the TET enzymes and the role of TETs in cellular differentiation and transformation and in cancer.  相似文献   

9.
Homing endonucleases: structure, function and evolution   总被引:19,自引:0,他引:19  
‘Homing’ is the lateral transfer of an intervening genetic sequence, either an intron or an intein, to a cognate allele that lacks that element. The end result of homing is the duplication of the intervening sequence. The process is initiated by site-specific endonucleases that are encoded by open reading frames within the mobile elements. Several features of these proteins make them attractive subjects for structural and functional studies. First, these endonucleases, while unique, may be contrasted with a variety of enzymes involved in nucleic acid strand breakage and rearrangement, particularly restriction endonucleases. Second, because they are encoded within the intervening sequence, there are interesting limitations on the position and length of their open reading frames, and therefore on their structures. Third, these enzymes display a unique strategy of flexible recognition of very long DNA target sites. This strategy allows these sequences to minimize nonspecific cleavage within the host genome, while maximizing the ability of the endonuclease to cleave closely related variants of the homing site. Recent studies explain a great deal about the biochemical and genetic mechanisms of homing, and also about the structure and function of several representative members of the homing endonuclease families. Received 6 January 1999; received after revision 24 February 1999; accepted 24 February 1999  相似文献   

10.
The cytochrome P450s are a superfamily of hemoprotein enzymes responsible for the metabolism of a wide variety of xenobiotic and endogenous compounds. The individual P450s exhibit unique substrate specificity and stereoselectivity profiles which reflect corresponding differences in primary sequence and tertiary structure. In the absence of an experimental structure, models for mammalian P450s have been generated by their homology with bacterial P450s of known structure. The rather low sequence identity between target and template proteins renders P450 modeling a challenging task. However, the substrate recognition properties of several P450s are consistent with recently developed working models. This review summarizes the major concepts and current approaches of molecular modeling of P450s. Received 28 September 1999; received after revision 25 November 1999; accepted 31 December 1999  相似文献   

11.
Among the pathogenic mechanisms underlying central nervous system (CNS) diseases, oxidative stress is almost invariably described. For this reason, numerous attempts have been made to decrease reactive oxygen species (ROS) with the administration of antioxidants as potential therapies for CNS disorders. However, such treatments have always failed in clinical trials. Targeting specific sources of reactive oxygen species in the CNS (e.g. NOX enzymes) represents an alternative promising option. Indeed, NOX enzymes are major generators of ROS, which regulate progression of CNS disorders as diverse as amyotrophic lateral sclerosis, schizophrenia, Alzheimer disease, Parkinson disease, and stroke. On the other hand, in autoimmune demyelinating diseases, ROS generated by NOX enzymes are protective, presumably by dampening the specific immune response. In this review, we discuss the possibility of developing therapeutics targeting NADPH oxidase (NOX) enzymes for the treatment of different CNS pathologies. Specific compounds able to modulate the activation of NOX enzymes, and the consequent production of ROS, could fill the need for disease-modifying drugs for many incurable CNS pathologies.  相似文献   

12.
Summary The fluorescence changes which occur upon the interaction of enzyme and substrate under stopped-flow conditions can provide a sensitive means to directly observe ES complexes. The interconversion of the intermediates during catalysis causes changes in fluorescence, signaling directly their existence, and allowing their quantitation. We have studied extensively and approach which measures radiationless energy transfer (RET) between enzyme tryptophanyl residues and a fluorescent peptide or ester substrate. Our studies of a number of proteolytic enzymes have validated the approach, which is sensitive and applicable to a variety of enzymes under a wide range of experimental conditions, including subzero temperatures. Direct excitation of fluorescent substrates can also be used to observe ES complex formation and breakdown and is complementary to the RET approach. Here we review both the RET and direct excitation kinetic approaches, with particular emphasis on the mathematical foundations we have developed which are critical to the successful interpretation of these or any other spectroscopic approach which yields a signal that is unique to ES complex.Acknowledgment. This work was supported by Grants-in-Aid GM-24967 and 24968 from the National Institute of Health of the Department of Health, Education and Welfare to Harvard Medical School. The continued advice and support of Dr B.L. Vallee is gratefully acknowledged, as is the help of Dr L. Bethune on theoretical aspects of the steady-state assumption. The excellent technical assistance of P. Maiorana is acknowledged. The abbreviations used are: RET; radiationless energy transfer, Dns, or dansyl; 5-dimethylaminonaphthalene-1-sulfonyl; DED; dansylethylenediamine, Mes; 2-(N-morpholino)ethane sulfonic acid, OMe; methoxide, mansyl; 6-(N-methylanilino)-naphthalene-2-sulfonyl.  相似文献   

13.
Antimicrobial and cytolytic peptides of venomous arthropods   总被引:1,自引:1,他引:0  
As a response to invading microorganisms, the innate immune system of arthropods has evolved a complex arrangement of constitutive and inducible antimicrobial peptides that immediately destroy a large variety of pathogens. At the same time, venomous arthropods have developed an additional offensive system in their venom glands to subdue their prey items. In this complex venom system, several enzymes, low-molecular-mass compounds, neurotoxins, antimicrobial and cytolytic peptides interact together, resulting in extremely rapid immobilization and/or killing of prey or aggressors. This review provides an overview of antimicrobial peptides identified in the hemolymph of venomous arthropods, and especially of cytolytic peptides in their venom. For these peptides a dual role is proposed: acting as antimicrobials as well as increasing the potency of the venom by influencing excitable cells.Received 17 March 2003; received after revision 11 June 2003; accepted 17 June 2003  相似文献   

14.
Summary In brain1, heart2 and kidney3, cell work in the absence of oxygen has been thought to precipitate anoxic damage by increasing the rate of depletion of cellular energy stores. In the medullary thick ascending limb of isolated perfused rat kidneys, however, reduction of ATP synthesis by a variety of mitochondrial or metabolic inhibitors caused ATP depletion comparable to that produced by oxygen deprivation but did not reproduce the lesions of anoxia. In these cells, unrestrained mitochondrial activity may be an important source of anoxic injury.  相似文献   

15.
16.
R R Lobb  D S Auld 《Experientia》1984,40(11):1197-1206
The fluorescence changes which occur upon the interaction of enzyme and substrate under stopped-flow conditions can provide a sensitive means to directly observe ES complexes. The interconversion of the intermediates during catalysis causes changes in fluorescence, signaling directly their existence, and allowing their quantitation. We have studied extensively an approach which measures radiationless energy transfer (RET) between enzyme tryptophanyl residues and a fluorescent peptide or ester substrate. Our studies of a number of proteolytic enzymes have validated the approach, which is sensitive and applicable to a variety of enzymes under a wide range of experimental conditions, including subzero temperatures. Direct excitation of fluorescent substrates can also be used to observe ES complex formation and breakdown and is complementary to the RET approach. Here we review both the RET and direct excitation kinetic approaches, with particular emphasis on the mathematical foundations we have developed which are critical to the successful interpretation of these or any other spectroscopic approach which yields a signal that is unique to the ES complex.  相似文献   

17.
Summary In this article the writer suggests an explanation for the germicide effect of compressed oxygen. The production of poisonous products of metabolism can be ignored, because the bacterial development is normal after removal of the pressure. Lack of nutritive material through inhibition of metabolism and permanent damage to the enzymes is also not a satisfactory explanation. The possibility is discussed that oxygen as an acceptor of electrones creates an ionisation of important parts of the cell and resulting in the death of the bacteria. The effect seems to be similar but weaker than that of H2O2.  相似文献   

18.
It is becoming increasingly clear that lipids are key regulators of cellular function and that these effects are quite diverse. First, the lipid environment in the cellular membrane bilayer is important in maintaining the normal function of receptors, enzymes, transporters and so on that are localized in the membrane. Phosphoinositides are important regulators of signalling molecules. Lipid metabolites formed by a number of enzymes including the cyclooxygenases, lipoxygenases and P450s also mediate important cellular functions. Fatty acids and lipid metabolites can also activate the nuclear peroxisome proliferator-activated receptors. Finally, a wide variety of lipid molecules are generated nonenzymatically by free-radical mechanisms that also exert potent biological effects in a wide variety of organs. Presented are a series of eight reviews that broadly cover all of these topics in some detail.  相似文献   

19.
20.
Class III adenylyl cyclases are the most abundant type of cyclic AMP-producing enzymes. The adjustment of the cellular levels of this second messenger is achieved by a variety of regulatory mechanisms which couple signals to adenylyl cyclase activity. Because of the divergent nature of stimuli which impinge on these enzymes, highly individualized class III adenylyl cyclases have evolved in metazoans, eukaryotic unicells and bacteria. Regulation usually exploits the dimeric structure of the catalyst, whose active centres form at the dimer interface. The fold of the catalytic domains and the basic catalytic mechanisms are similar in all class III adenylyl cyclases, and substrate binding generally closes the active site by an induced-fit mechanism. Regulatory inputs can result in dramatic rearrangements of the catalytic domains within the dimer, which often are based on rotational movements. Received 13 February 2006; received after revision 16 March 2006; accepted 20 April 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号