首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
基于入侵性杂草克隆的图像聚类方法   总被引:2,自引:0,他引:2  
针对原始谱聚类初始敏感的缺点,提出了一种新的基于入侵性杂草优化(IWO)的图像聚类方法(CIWO).该算法通过计算峰值信噪比(PSNR),动态确定图像聚类簇数的最优选择范围,采用最小量差、最小簇内距离、最大簇间距离重新构造了图像聚类质量的评价函数,通过模拟杂草克隆的自然行为对图像数据集的簇中心进行快速准确定位.将算法应用于几个基准测试图像,并通过聚类有效性准则与k-Means、FCM、PSO等方法进行比较,发现CIWO具有更稳定的图像聚类性能.实验结果也表明,所提出的算法可获得更优的图像聚类质量.  相似文献   

2.
DPC算法是一种能够自动确定类簇数和类簇中心的新型密度聚类算法,但在样本分配策略上存在聚类质量不稳定的缺陷.其改进算法KNN-DPC虽然具有较好的聚类效果,但效率不高而影响实用.针对以上问题,文中提出了一种近邻密度分布优化的DPC算法.该算法在DPC算法搜索和发现样本的初始类簇中心的基础上,基于样本的密度分布采用两种样本类簇分配策略,依次将各样本分配到相应的类簇.理论分析和在经典人工数据集以及UCI真实数据集上的实验结果表明:文中提出的聚类算法能快速确定任意形状数据的类簇中心和有效地进行样本类簇分配;与DPC算法和KNN-DPC算法相比,文中算法在聚类效果与时间性能上有更好的平衡,聚类稳定性高,可适用于大规模数据集的自适应聚类分析.  相似文献   

3.
一种基于最大最小距离和SSE的自适应聚类算法   总被引:1,自引:0,他引:1  
K均值聚类是一种常用的聚类算法,需要指定初始中心和簇数,但随意指定初始中心可能导致聚类陷入局部最优解,且实际应用中簇数未必是已知的。针对K均值聚类的不足,文中提出了一个自适应聚类算法,该算法基于数据实例之间的最大最小距离选取初始聚类中心,基于误差平方和(SSE)选择相对最稀疏的簇分裂,并根据SSE变化趋势停止簇分裂从而自动确定簇数。实验结果表明,该算法可以在不增加迭代次数的情况下得到更准确的聚类结果,验证了所提聚类算法是有效的。  相似文献   

4.
提出了一种基于簇特征的文本增量聚类算法:充分利用简单、有效的k-means算法来进行初始聚类,并保留聚类后每个簇的簇中心、均值、方差、文档数、3阶中心矩和4阶中心矩作为该簇的簇特征,当出现新增数据时,利用初始簇的簇特征对新增数据进行聚类.在20newsgroups数据集上的实验结果表明:相比于对整个数据集进行重新聚类,该算法具有一定的优势.  相似文献   

5.
针对MinMax k-means算法易产生空解、 收敛速度慢和计算效率低的问题, 提出一种增量式MinMax k-means聚类算法. 该算法从给定的初始聚类个数开始, 以固定步长递增式产生新的聚类中心, 采用基于数据均衡的快速分裂方法产生增量聚类中心, 从而避免了传统增量聚类中心选择中遍历数据、k-means聚类算法运行次数过多导致的大计算量问题. 与MinMax k-means及相关算法的对比实验结果表明, 该算法在计算效率和求解精度上均优于对比算法, 有效改善了MinMax k-means聚类对初始化中心敏感和易产生空解的问题.  相似文献   

6.
针对传统K-means算法的聚类结果依赖初始聚类中心的缺陷,提出了一种基于密度的改进K-means聚类算法,该算法选择位于数据集样本密集区且相距较远的数据对象作为初始聚类中心,实现K-means聚类。针对PAM算法时间复杂度高,且不利于大数据集处理的缺陷,提出了一种基于密度的改进K-medoids聚类算法,在选取初始中心点时根据数据集样本的分布特征选取,使得初始中心点位于不同类簇。UCI机器学习数据库数据集和随机生成的带有噪音点的人工模拟数据集的实验测试证明,基于密度的改进K-means算法和基于密度的改进Kmedoids算法都具有很好的聚类效果,运行时间短,收敛速度快,有抗噪性能。  相似文献   

7.
针对K-means聚类算法对初始聚类中心敏感问题,提出1种结合方差与误差平方和的优化算法.首先,该算法基于方差和距离选取k个位于不同区域且样本点相对集中的集合.然后,分别选取使这k个样本集合误差平方和最小的数据作为k个初始聚类中心.利用改进算法与其他算法将UCI数据库中所选取的数据集进行聚类划分,对比不同算法下的聚类结...  相似文献   

8.
提出了多目标监督聚类GA算法,即:根据样本的类标签有监督地将样本聚类,在每个类中根据样本属性的相似性有监督地聚成类簇.如果分属不同类标签的类簇出现相交,则相交类簇再次聚类,直到所有类簇均不相交.适应度矢量函数由类簇数和类内距离2个目标确定,类簇数和类簇中心由目标函数自动确定,从而类簇数和中心就不受主观因素的影响,并且保证了这2个关键要素的优化性质.预测分类时,删去单点类簇,并根据类簇号和离某个类簇中心距离的最近邻法则以及该类簇的类标签进行分类.算法模型采用C#实现,采用3个UCI数据集进行实例分析,实验结果表明,本算法优于著名的Native Bayes、Boost C4.5和KNN算法.  相似文献   

9.
作者针对传统k-means初始点的选择提出基于最小距离的优化算法。首先构造数据点集的带权无向图,更新数据点间的最小距离,然后利用最小距离获取数据点的密度函数,通过数据点的密度获取初始聚类中心,最后根据带权无向图中的路径长度获取邻近数据点形成初始聚类,对初始聚类内的数据点平均得到该类簇的聚类中心。实验结果表明,在相同的条件下所提算法在聚类效果上优于传统的k-means算法。  相似文献   

10.
随机选择初始聚类中心的k-means算法易使聚类陷入局部最优解、聚类结果不稳定且受孤立点影响大等问题.针对这些问题,提出了一种优化初始聚类中心的方法及孤立点排除法.该算法首先选择距离最远的两点加入初始化中心,再根据这两点将原始簇分成两个聚簇,在这两个簇中挑选方差较大的簇按照一定的规则进行分裂直至找到k个中心,初始中心的选择过程中用到孤立点排除法.在UCI数据集及人造含一定比例的噪音数据集下,通过实验比较了改进算法与其他算法的优劣.实验表明,改进后的算法不仅受孤立点的影响小、稳定性好而且准确度也高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号