首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
考虑具有非线性源项的时间分布阶和里斯空间分数阶扩散方程,通过中点求积规则近似方程中的积分项、中心差分法离散空间分数阶导数、Diethelm的后向有限差分公式离散时间分数阶导数,得到所给方程数值解的隐式差分格式,并分析其可解性、稳定性和收敛性。通过一个具体的数值例子对理论分析的正确性进行验证。  相似文献   

2.
现实生活中的很多物理现象只有将分数阶微积分同量子力学结合起来才能得到准确的表述,因此对薛定谔方程的研究也从整数阶扩充到了分数阶.本文利用时间分裂谱方法离散求解半经典体系中的Riesz空间分数阶非线性薛定谔方程.对该数值方法进行了稳定性分析和色散分析,并将不同网格下求得的数值解进行了对比.结果表明时间分裂谱方法具有高精度近似和无条件稳定性.  相似文献   

3.
针对变分数阶扩散方程,提出新隐式差分法.首先,对二阶空间导数和Riemann-Liouville型变时间分数阶导数算子进行离散化处理,将变分数阶扩散方程转化为代数方程组求解;然后,借助Fourier级数技术给出了新隐式差分法的收敛性分析;最后,通过数值算例检验该方法,计算结果表明了新隐式差分法的可行性和有效性.  相似文献   

4.
扩散方程在物理领域常用来模拟不同物质间的相互扩散现象,多项时间分数阶扩散方程能更清晰地反应复杂系统的物理意义.本文对两项时间分数阶扩散方程中的分数阶导数直接进行离散,空间导数采用中心差分格式进行离散,提出了求解两项时间分数阶扩散方程的一个隐式差分格式;讨论了分数阶扩散方程差分解的存在唯一性,证明了差分格式的稳定性及收敛性;最后数值试验验证了格式的有效性.  相似文献   

5.
将一阶的时间偏导数用Coimbra变时间分数阶导数算子进行替换,提出了一种新隐式差分解法.首先,对Coimbra型变时间分数阶导数算子和二阶空间导数进行离散化处理,将Coimbra变时间分数阶扩散-波动方程转化为代数方程组求解;然后,借助于数学归纳法给出了新隐式差分方法的收敛性分析,并证明了新隐式差分方法是无条件收敛的;最后,通过数值例子检验该方法,计算结果表明新隐式差分方法的理论分析是正确的,所构造的离散格式是可行的和有效的.  相似文献   

6.
针对时间分数阶扩散方程,提出了一种新的隐式差分方法,其中空间导数采用中心差分方法离散.对于时间分数阶导数,将Caputo分数阶导数转化为Riemman-Liouville分数阶导数后,写成Hadamard有限部分积分,再用分段二次多项式对该有限积分部分逼近,由此推导出Caputo分数阶导数的3-α阶离散方法,从而得到无条件稳定的和收敛的分数阶扩散方程的隐式差分格式.数值实验验证该隐式差分格式的有效性.  相似文献   

7.
通过求解不可压缩流体RANS方程,数值模拟带端板三维地效应翼的性能及周围流场。数值方法引进了Chorin的人工可压缩性概念,应用近似因式分解技术同时求解速度和压力场,动量方程对流项用二阶迎风差分格式离散,其余空间导数项均采用四阶精度的中心差分格式离散,时间离散采用欧拉隐式格式,计算在非交错网格上进行,为了避免压力场的振荡,在连续方程中隐式地加入了压力的四阶数值耗散项,湍流计算采用了Baldwin-  相似文献   

8.
用辛Runge-Kutta谱方法研究变系数非线性Schr(o)dinger方程.我们在空间方向用快速Fourier变换方法来离散二阶导数项,在时间方向用2级4阶隐式辛Runge-Kutta方法来离散一阶导数项,给出了变系数的非线性Schr(o)dinger方程的数值解法.数值结果显示该算法行之有效,它可以保持系统模方守恒和能量守恒的性质.  相似文献   

9.
针对非线性变阶空间-时间分数阶对流-扩散方程的初边值问题,提出一种全隐式有限差分格式.首先,分别对Riemann-Liouville型变时间分数阶导数算子和Riemann-Liouville型变空间分数阶导数算子和广义Riesz分数阶导数算子进行离散化处理;然后,通过离散的能量方法证明全隐式有限差分格式的稳定性和收敛性,并验证其收敛阶为O(τ+h);最后,通过数值算例检验该方法.试验结果表明:全隐式有限差分格式求解非线性变阶空间-时间分数阶对流-扩散方程初边值问题是可行和有效的.  相似文献   

10.
针对数值求解Cahn-Hilliard方程时非线性项引起的时间耗时问题,提出了时间双层网格混合有限元方法.首先,在时间粗网格上,通过非线性牛顿迭代方法求解非线性混合有限元系统,其中空间离散采用混合有限元方法,时间离散采用隐式欧拉格式;其次,基于初始迭代数值解和拉格朗日插值公式,在时间细网格上求解线性混合有限元系统;最后,分析了该方法的稳定性和误差估计,并通过数值算例进行验证.结果表明,与传统的混合有限元方法相比,该方法可以节省计算时间.  相似文献   

11.
研究二维有限域上的空间分数阶扩散方程的数值解法,通过移位的Grunwald公式对空间分数阶导数进行离散,得到Euler隐式差分格式。利用傅里叶变换理论证明了交替差分格式的一致性。  相似文献   

12.
求解二维热传导方程的高精度紧致差分方法   总被引:1,自引:0,他引:1  
基于Richardson外推法提出了一种数值求解二维热传导方程的高阶紧致差分方法.该方法首先利用时间二阶、空间四阶精度的紧致交替方向隐式(ADI)差分格式在不同尺寸的网格上对原方程进行求解,然后利用Richardson外推技术外推一次,最终得到了二维热传导方程时间四阶、空间六阶精度的数值解,数值实验验证了该方法的高阶精度及有效性.  相似文献   

13.
探讨了一维对流扩散方程的一种高精度数值解法,该解法在空间上采用了Chebyshev谱元方法,在时间上结合了半隐式Adams方法。通过数值算例验证了解法的可行性,利用特征分析法得到了对流扩散方程谱元求解时不同离散形式的稳定性条件,并对数值求解的稳定性进行了预测。通过时间步长、网格划分、对流项和黏性项插值阶数的影响研究表明:耦合Chebyshev谱元方法和半隐式Adams方法在求解对流扩散方程时能够获得高精度的数值解;时间离散时Adams方法的黏性项采用一阶插值形式、对流项采用二阶插值形式,在未增加计算量的同时能够获得较大的稳定区域和较高的计算精度。  相似文献   

14.
在时间上使用Caputo型分数阶导数,在空间上使用Riemann-Liouville型分数阶导数,研究时空分数阶扩散方程的高效数值算法。首先,在时间上使用了一个一致收敛的高阶数值离散格式和在空间上利用移位的Grünwald-Letnikov公式进行离散;其次,分析离散化代数方程组的系数矩阵结构,利用快速Fourier变换和GMRES迭代法建立求解时空分数阶的快速计算方法;最后,给出的数值结果表明,本文的数值格式是有效的。  相似文献   

15.
从群速度的角度推导了包含均匀稳定来流的二维波动方程的1阶吸收边界条件,基于Che-byshev谱元法提出了二维均匀稳定来流波动方程的求解方法.在空间上采用谱元方法,在时间上采用隐式Newmark积分法,从而获得了波动方程的离散形式.经具体算例验证表明:与1阶Clay-ton-Engquist-Majda吸收边界条件相比,所推导的吸收边界条件能更有效地削弱边界上的数值反射,避免解的失真,求解方法在空间上具有谱精度,在时间上达到了2阶精度.  相似文献   

16.
二维波动方程的高精度交替方向隐式方法   总被引:1,自引:1,他引:0  
基于二阶微商的四阶紧致差商逼近公式及加权平均思想,提出了数值求解二维波动方程的2种精度分别为O(τ2+h4)和O(τ4+h4)的交替方向隐式(ADI)格式,以及与其相匹配的第一个时间层的同阶离散格式,并且通过Fourier方法分析了格式的稳定性.该方法在沿每个空间方向上只涉及3个网格基架点,因此可以重复采用TDMA算法,从而大大节省计算时间.数值实验验证了所用方法的精确性和可靠性.  相似文献   

17.
研究时空分数阶扩散方程的高阶快速数值算法。在时间上,取α(α∈(0,1))阶Caputo分数阶导数,在空间上,取β(β∈(1,2))阶Riesz分数阶导数。首先,在时间离散上使用了一个(3-α)阶一致收敛的格式,在空间上利用加权移位的Grünwald-Letnikov公式对空间部分进行离散;其次,分析格式的系数矩阵结构满足Toeplitz矩阵,利用快速Fourier变换结合FGMRES方法建立求解时空分数阶的快速计算方法;最后,给出数值结果,结果表明本文的数值格式是有效的。  相似文献   

18.
Riesz空间分数阶对流扩散方程是从混沌动力系统导出的.继续Ilic,Liu等的工作,我们提出在有界区域内求解Riesz空间分数阶对流-扩散方程的一种新的计算有效方法.即基于这两个Riesz空间分数阶导数的矩阵表示.这个方法的创新在于这个算子的标准离散得到包含具有相同分数次幂的矩阵的一个常微分方程组,并利用计算有效的分数阶行方法求解.同时借助于分数阶导数的谱表示和拉普拉斯变换,导出这个Riesz空间分数阶对流扩散方程的解析解.最后给出了数值例子来证实数值方法的有效性.  相似文献   

19.
结合标准有限元方法及Crank-Nicolson有限差分方法给出了求解空间分数阶变系数薛定谔方程的一种全离散数值格式。时间方向上采用修改的Crank-Nicolson离散格式,空间方向上采用了有限元方法。从理论上证明该离散格式的保能性及无条件稳定性。  相似文献   

20.
建立了格子Boltzmann模型来数值求解空间分数阶对流方程. 通过积分中值定理和线性插值方法将分数阶导数离散化,并结合Taylor展式和Chapman-Enskog多尺度展开推导出各方向上的平衡态分布函数. 对于一维和二维问题,数值算例验证了格子Boltzmann方法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号