首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
本文提出了一种基于混淆熵(confusion entropy,CEN)的分类器集成算法.该算法按照候选分类器的CEN值升序排序,遍历选择使得CEN值减小的分类器,从而使组合不断优化,以获得更好的集成分类结果.使用7个候选分类器在5个UCI数据集上进行实验,结果表明,所提算法整体上优于经典的分类器集成算法AdaBoost和XGBoost以及另外3种近期算法(AdaCost、AdaCost-CNN和CU-AdaCost),验证了算法的可行性.  相似文献   

2.
分类器之间的多样性被认为是分类器集成的一个关键因素.然而,目前多样性没有统一的定义和度量,也没有确定的操作方法.针对这些问题,总结和介绍了现有的一些多样性度量方法,及其在可视化、构造分类器集成方面的多种具体应用方法.最后,讨论了精度与多样性两难问题,并给出了多样性方法的有效性说明,指出关于集成学习和多样性的研究还有很多问题亟待解决.  相似文献   

3.
X射线结晶学是确定蛋白质分子结构的重要方法之一。准确预测蛋白质的结晶倾向性对于基于X射线结晶学的蛋白质结构确定的成功率具有重要意义。该文提出了一种基于异质分类器集成的方法,以进一步提高蛋白质结晶倾向性预测的准确率。首先从蛋白质序列出发抽取氨基酸组成成分、伪氨基酸组成成分、伪位置特异性得分矩阵以及伪溶剂可及性特征,并将这些特征进行组合;然后,在特征空间训练多个异质分类器并进行集成。该文所提方法在公开训练集上的五重交叉验证及独立测试集上的马修斯系数分别达到了0.64及0.73。与现有的基于序列的蛋白质结晶倾向性预测方法的对比结果进一步验证了所提方法的有效性。  相似文献   

4.
基于相对熵的网络流量异常检测方法   总被引:1,自引:0,他引:1  
网络流量的异常检测是网络安全领域一个重要分支,目标是及时准确地检测网络中发生的突发攻击事件。现有流量异常检测方法如数据挖掘、小波分析等方法或因检测效果较差,或因算法复杂,难以满足实时在线流量检测的应用需求。文中引入信息熵概念,通过对网络流量进行分维和分层实时计算网络流量相对熵,提出了一种基于相对熵的流量异常检测方法,算法时间复杂度为O(N×log2N×D)。实验分析表明,当检测率达到0.80~0.85时,误报率控制在0.03~0.05,可同时满足系统实时性和准确性要求。  相似文献   

5.
窃电行为是导致电力企业电能与经济效益损失的重要原因.提出了一种基于t-LeNet(Time-Series Specific Version of LeNet Model)与时间序列分类(Time Series Classification, TSC)的窃电行为检测方法:首先,获取用户用电量时序数据,使用降采样方法生成训练集;然后,使用t-LeNet神经网络训练并预测得到分类结果,判断用户是否存在窃电行为.使用国家电网真实用户的用电量数据集进行了实验验证.实验结果表明,所提方法相较于基于Time-CNN(Time Convolutional Neural Network)、MLP(Muti-Layer Perception)的时间序列分类方法,在综合评价指标、精确率、召回率指标上均有不同程度提高,其对窃电行为的检测具有可行性与有效性.  相似文献   

6.
针对电网公司获取有标签数据成本高、难度大,而获取的无标签数据难以训练有效窃电检测模型的问题,提出了在少量有窃电标签数据场景下基于联合训练生成对抗网络(Co-training Generative Adversarial Networks, CT-GAN)的半监督窃电检测方法.首先,探究了生成对抗网络及半监督生成对抗网络的原理与结构.其次,提出了采用Wasserstein距离取代JS(Jensen-Shannon)散度和KL(Kullback-Leibler)散度距离以解决生成对抗网络因梯度消失和模式崩溃原因导致的模型训练不稳定和生成数据质量低的问题,并构建了多判别器联合训练模型,避免了单个判别器分布误差高的问题,同时增强了GAN生成标签样本数据的能力,通过扩充标签样本数据集,提升了模型检测准确度和泛化能力.最后,采用爱尔兰电网数据集验证了该方法的准确性和有效性.  相似文献   

7.
随着安卓恶意程序的数量的急剧增加,恶意程序检测已成为一个重要的研究课题.然而,目前许多研究表明,恶意程序的检测仍然需要改进,安卓的碎片问题和需要root权限,阻碍了这些方法的广泛使用.现有的杀毒程序依赖于需要实时更新的签名数据库,这无法检测出零日恶意程序.在本文中,我们提取了安卓程序中的特征,进行混合,选择集成算法中的DECORATE算法,并用WEKA工具辅助进行分类恶意程序的检测.该方法最终达到95.8%的检测精度,同时我们在真实的数据集上经过十折交叉验算实验及对比.  相似文献   

8.
针对多分类器系统差异性评价中无法直接处理模糊数据的问题,提出了一种采用互补信息熵的分类器集成差异性度量(CIE)方法。首先利用训练数据生成一系列基分类器,并对测试数据进行分类,将分类结果依次组合生成分类数据空间;然后采用模糊关系条件下的互补信息熵度量分类数据空间蕴含的不确定信息量,据此信息量判断基分类器间的差异性;最后以加入基分类器后数据空间差异性增加为选择分类器的基本准则,构建集成分类器系统,用于验证CIE差异性度量与集成分类精度之间的关系。实验结果表明,与Q统计方法相比,利用CIE方法进行分类器集成,平均集成分类精度提高了2.03%,分类器系统集成规模降低约17%,而且提高了集成系统处理多样化数据的能力。  相似文献   

9.
10.
首先选取最优小波基对织物疵点图像进行分解,并对分解后的水平及垂直高频系数进行灰度值归一化,然后分别求出水平和垂直细节图像的最大熵及平均熵,通过比较判断出疵点类型,最后对平均熵大的细节图像进行最大熵原理的分割,得到最终的疵点检测结果。仿真实验表明该方法对常见纬向和径向类织物疵点的检测是有效的。  相似文献   

11.
研究了基于聚类技术提高分类器差异性的方法.通过Bootstrap技术与分类器学习算法训练分类器模型,利用分类器在验证集上的分类结果作为聚类的数据对象;然后应用聚类算法对这些数据聚类,并在每个簇中选择分类器代表模型,以此构成集成学习的成员;最后应用融合方法实验研究了基于聚类技术提高差异性的集成学习性能,并与集成学习方法bagging,adaboost进行了实验比较.  相似文献   

12.
对随机旋转集成方法提出了一种针对降维问题的改进,得到了新的降维算法框架进行随机变换降维,可以显著减少降维过程中造成的信息损失.采用随机变换降维后,训练监督学习算法时可以获得更高的准确率和更好的泛化性能.通过在模拟数据上进行的实验,证明了使用多重共线性数据进行回归分析时,与传统降维算法相比,经随机变换降维处理后可以保留更多的信息,获得更小的均方误差.对随机变换降维在手写数字识别数据集上的表现进行了研究,证明了与一般性的降维算法相比,随机变换降维在图像分类问题上可以获得更高的准确率.  相似文献   

13.
窃电行为对国家电力系统及供电公司造成了极大的损失,故反窃电技术是电力行业的重要研究方向之一。传统的窃电用户定位方法存在定位不准确、查处效率低等问题,为了解决上述问题,提出基于多维行为分析的窃电高风险客户精准定位方法。首先通过相关矩阵R及特征值谱熵正则化完成用户数据去噪,其次在UFS-MI模型内提取用户数据特征,分析用户用电的多维行为,最后根据逻辑回归算法完成窃电高风险客户的精确定位。实验结果表明,所提方法的窃电高风险客户定位精准度较高,误判率较低,整体定位效果较好。  相似文献   

14.
盗窃类案件是公安机关较为棘手的一类犯罪,呈现高发低破态势.提前预测发案情况是预防该类型犯罪的有效途径,因此对预测盗窃犯罪提出了一种以Bagging方法为基础、基于特征选择准确度和差异性双重考量的集成学习算法,根据集成学习器好而不同的原则,构造由异质基学习器集成的特征选择器,实现对影响盗窃犯罪发生因子的有效选择,使用更少维度的特征数据集提升犯罪预测的效率和准确度.实验结果表明,提出的SEFV_Bagging算法具有较好的泛化能力和稳定性,在测试数据上表现出的预测准确度也较为理想,且算法无需根据先验知识设置所选特征子集维数,在盗窃犯罪数据分析预测领域应用中有较为明显优势.   相似文献   

15.
互信息过滤式特征选择算法往往仅局限于互信息这一度量标准.为规避采取单一的互信息标准的局限性,在互信息的基础上引入基于距离度量的算法RReliefF,从而得出更好的过滤式准则.将RReliefF用于分类任务,度量特征与标签的相关性;应用最大互信息系数(maximal information coefficient,MIC)度量特征与特征之间的冗余性、特征与标签的相关性;最后,应用熵权法为MIC和RReliefF进行客观赋权,提出了基于熵权法的过滤式特征选择算法(filtering feature selection algorithm based on entropy weight method, FFSBEWM).在13个数据集上进行对比实验,结果表明,FFSBEWM所选择的特征子集的平均分类准确率和最高分类准确率均优于其他对比算法.  相似文献   

16.
针对支持向量机(support vector machines,SVM)检测异常用电用户精度受样本非均衡性和核函数选择影响的问题,提出一种基于TLSmote-SVM(tomekLink-smote-SVM)的窃漏电诊断模型.首先基于用电用户数据分布,利用Smote方法扩充少数类样本,同时采用Tomek-link剔除噪声...  相似文献   

17.
基于特征选择的神经网络集成方法   总被引:5,自引:0,他引:5  
将特征选择技术ReliefF引入Bagging方法中,提出了一种新的神经网络集成方法——ReBag.实验结果表明,本方法的泛化能力优于Bagging方法,与Attribute Bagging方法相当但效率更高.  相似文献   

18.
提出一种基于地形信息熵的灰度人脸检测算法,能够部分地消除当前困扰人脸检测过程中的光照和噪声等因素的影响,尤其对阴阳脸的检测有一定的效果.该算法将人脸图像看作一种特殊的地形,并提取有效的信息熵;利用区域融合和区域过滤等操作,获取"人眼对"的候选区域;根据"三庭五眼"人脸特征,最终确定人脸的位置.实验表明,该方法在某种程度上可以有效地消除光照和噪声的影响.  相似文献   

19.
一种基于信息熵的语音端点检测方法   总被引:8,自引:0,他引:8  
根据语音信号的波形特征,利用熵函数的性质,构造了一种特殊的熵函数,通过判断此函数值和大小,确定是语音还是无声状态,实验表明,此方法计算简单而且具有很高的准确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号