首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 689 毫秒
1.
为了将正交双向小波包推广到高维情形φan+λ(t)=∑k∈Zdp+k,λφn(At-k)+p-k,λφn(k-At),构造了伸缩因子为矩阵A的正交双向小波包{φan+λ(t),λ=0,1,…,a-1}n∈Z+,分别从时频域角度通过小波包基函数的正交性研究了高维正交双向小波包的性质,得到了小波包子空间的分解算法、重构算法及频域表示为∏∞j=1Pλjωa()jΦ0(0)。  相似文献   

2.
为了将正交双向小波包推广到高维情形ρan+λ(t)=∑k∈Zdp+k.λρn(At-k)+Pk-.λρn(k-At),构造了伸缩因子为矩阵A的正交双向小波包{ρan+λ(t),λ=0,1,…,a-1}n∈z+,分别从时频域角度通过小波包基函数的正交性研究了高维正交双向小波包的性质,得到了小波包子空间的分解算法、重构算法及频域表示为Ⅱj=1∞Pλ(w/aj)Φ0(0).  相似文献   

3.
双正交对称双向小波的构造   总被引:1,自引:0,他引:1  
对任一双向加细函数φ(x)=Σk∈Zpk+φ(2x-k)+Σk∈Zpk-φ(2x-k),给出判断双向加细函数对称的简便条件,并得到由紧支撑双正交双向加细函数构造紧支撑双正交双向多尺度函数的方法,最后给出一类双正交对称双向加细函数对应的双正交对称双向小波的构造算法。  相似文献   

4.
研究了一类带调和势Schrǒdinger方程组的初值问题iφt+rΔφ+m|x|2φ|ψ|2=a(j+1)|φ|j-1|ψ|k+1φ,iψt+qΔψ+n|x|2ψ|φ|2=b(k+1)|ψ|k-1|φ|j+1ψ,(0,x)=φ0(x),ψ(0,x)=ψ0(x),得出了该初值问题的解在有限时间内的爆破.  相似文献   

5.
Let G be a simply connected bounded domain, we consider the system of partial differential equationsof third order in Gφ_j(x,y,u,v,u_(10),v_(10),u_(01),v_(01),...,u_(03),v_(03)) = 0, (j = 1,2),(1)where u_(ik) = U_(x~i_y~k), v_(ik) = V_(x~i_y~k)(0≤i, k≤3), φ_j (j = 1, 2) are continuous real functions of the variablesx,y[(x,y) ∈G] and u_(ik), v_(ik)(0≤i, k≤3, i+k≤3) , and continuously differentiable for u_(ik) ,v_(ik)(0≤i,k≤3, i+k=3)Definition 1 If the system (1) satisfy the following conditions in G respectively|A_30λ~3 + A_(21)λ~2+ A_(12)λ+ A_02|≠0,λ∈R.(2)3A_(30)+ _(21) + A_(12)+ 3 _(03)|≠0.(3)then (1) will be called π-elliptic type and π-strong elliptic type equation system respectively, where  相似文献   

6.
基于多尺度分析理论(MRA)与A.W.W方法构造了M型小波包,并研究其性质,如频谱有限性、以尺度序列(滤波器)hn=φ(n/2)及当n→∞,hn=0(n^-N),它在小波包应用的计算中速率可比Shannon小波包快,另外,着重给出了当l=2^k-1,k∈Z 时,{μ2l(ω)},{μ2l 1(ω}}的紧支撑区间的通式,为准确表征信号频域特征提供了依据。  相似文献   

7.
给出当f1,…,fn为非线性多项式时,系统dxi(t)/dt=fi(x1(t),…,xn(t))不存在多项式首次积分的1个充分条件:矩阵A的特征根λ1,…,λn不满足任何非共振条件k1λ1 … knλn=0,k1,…,kn∈Z ,n∑i=1ki>0.  相似文献   

8.
以平凡解u=0,v=1作为种子解,代入矩阵谱问题Φx=UΦ,U=(-λ+u v~(1/2) v λ-u),Φt=VΦ,V=(V1 V2 V3 -V1),其中V1=-λ2+u2+1/6ux+1/6(lnv)xx+1/8(lnv)x2,V2=vλ+uv-1/2vx,V3=(vλ)~(1/2)+uv~(1/2)+vx/(4v~(1/2)).求出基本解.选取两个基本解φ(λj)=(coshξjβjsinhξj+λj coshξj),ф(λj)=(sinhξjβjcoshξj+λj sinhξj),其中ξj=βj(x+λj t),βj=(λj2+1)~(1/2),(1≤j≤N-1).再利用克莱姆法则和达布变换求出方程的非平凡解,最后又具体给出N=1和N=2两种情形.  相似文献   

9.
设λ>0,考虑从lp(Z)到Lp(R)(p=1)的算子Lλ:(Lλy)=∑k∈ZykLλ(x-k),y=(yk)k∈Z,x∈R,其中Lλ(x)=∑k∈Zcke-λ(x-k)2,x∈R,满足插值条件Lλ(j)=δ0j,j∈Z,且δ0j是Kronecher常数.在此研究的‖Lλ‖p(λ→0)渐近行为是基于‖Lλ‖p的积分表达式进行的.得到了一个强渐近估计:‖Lλ‖p=π42logπλ2 π42(log2λ γ) π2A o(1)(λ→0)其中A是一绝对常数并且γ是欧拉常数.  相似文献   

10.
部分工件必须不误工的误工排序问题   总被引:2,自引:2,他引:0  
排序论中使误工工件的个数为最少的单台机器排序问题,称为误工问题,是排序论中最基本的问题之一.1973年,Sidney研究在工件的一个子集T中的工件必须不误工的条件下,使误工工件的个数为最少的误工排序问题1|T|∑Uj,并且给出该问题复杂性为O(n log n)的多项式算法--Sidney算法.本文把Sidney 算法改写成比较简洁的算法1,1)步骤1:设E 0=T,J-E 0={j1,j2,…,jm},j1<j2<…<jm,m=n-|T|,令k=1:2)步骤2:若k=m+1,算法终止,(Em,J-Em)就是最优排序:若k<m+1,转入步骤3:3)步骤3:设Fk=Ek-1∪{jk},计算Ek如下:如果Fk是不误工子集,令Ek=Ek-1∪{jk}:否则,如果Fk不是不误工子集,令Ek+Fk\{jr}.其中工件jr的加工时间为pr=max{pi|ji∈Fk\T}.Ek中的工件是按EDD序排列.k=k+1,转入步骤2.并用数学归纳法证明算法1产生的排序是该误工问题的最优解.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号