首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Gene expression in spermiogenesis   总被引:10,自引:0,他引:10  
Germ cells convey parental genes to the next generation, and only germ cells perform meiosis, which is a mechanism that preserves the parental genes. The fusion of the products of germ cell meiosis, the haploid sperm and egg, creates the next generation. Sperm are the haploid germ cells that contribute genes to the egg. In preparation for this, the haploid round spermatids produced by meiosis undergo drastic morphological changes to become sperm. During this process of spermiogenesis, the nuclear form of the haploid germ cell takes shape, the mitochondria are rearranged in a specific manner, the flagellum develops and the acrosome forms. Spermatogenesis is supported by precise and orderly regulation of gene expression during the changes in chromatin structure, when protamine replaces histone. In this report, we summarize the molecular mechanisms involved in spermiogenesis.Received 2 September 2004; received after revision 7 October 2004; accepted 7 October 2004  相似文献   

2.
Maintenance of ploidy in sexually reproducing organisms requires a specialized form of cell division called meiosis that generates genetically diverse haploid gametes from diploid germ cells. Meiotic cells halve their ploidy by undergoing two rounds of nuclear division (meiosis I and II) after a single round of DNA replication. Research in Saccharomyces cerevisiae (budding yeast) has shown that four major deviations from the mitotic cell cycle during meiosis are essential for halving ploidy. The deviations are (1) formation of a link between homologous chromosomes by crossover, (2) monopolar attachment of sister kinetochores during meiosis I, (3) protection of centromeric cohesion during meiosis I, and (4) suppression of DNA replication following exit from meiosis I. In this review we present the current understanding of the above four processes in budding yeast and examine the possible conservation of molecular mechanisms from yeast to humans.  相似文献   

3.
Sex chromosome inactivation in male germ cells is a paradigm of epigenetic programming during sexual reproduction. Recent progress has revealed the underlying mechanisms of sex chromosome inactivation in male meiosis. The trigger of chromosome-wide silencing is activation of the DNA damage response (DDR) pathway, which is centered on the mediator of DNA damage checkpoint 1 (MDC1), a binding partner of phosphorylated histone H2AX (γH2AX). This DDR pathway shares features with the somatic DDR pathway recognizing DNA replication stress in the S phase. Additionally, it is likely to be distinct from the DDR pathway that recognizes meiosis-specific double-strand breaks. This review article extensively discusses the underlying mechanism of sex chromosome inactivation.  相似文献   

4.
5.
6.
Summary Self-stimulatory growth factors, produced by a human Epstein-Barr virus (EBV)-positive lymphoblastoid B cell line, named BA-D10-4, have been tested for the capacity to induce DNA synthesis in various human and animal cell lines, including lymphoid, either EBV-positive or EBV-negative, and non-lymphoid cell lines. It has been found that BA-D10-4 cells produce growth factors which seem to be essential for their sustained proliferation in vitro, and which increase DNA synthesis in different primate lymphoid cells, independently of the presence of the EBV genome and of the lymphocyte lineage.  相似文献   

7.
8.
Although all nucleated cells within a multicellular organism contain a complete copy of the genome, cell identity relies on the expression of a specific subset of genes. Therefore, when cells divide they must not only copy their genome to their daughters, but also ensure that the pattern of gene expression present before division is restored. While the carrier of this epigenetic memory has been a topic of much research and debate, post-translational modifications of histone proteins have emerged in the vanguard of candidates. In this paper we examine the mechanisms by which histone post-translational modifications are propagated through DNA replication and cell division, and we critically examine the evidence that they can also act as vectors of epigenetic memory. Finally, we consider ways in which epigenetic memory might be disrupted by interfering with the mechanisms of DNA replication.  相似文献   

9.
C Garzelli  A Bazzichi 《Experientia》1991,47(7):731-734
Self-stimulatory growth factors, produced by a human Epstein-Barr virus (EBV)-positive lymphoblastoid B cell line, named BA-D10-4, have been tested for the capacity to induce DNA synthesis in various human and animal cell lines, including lymphoid, either EBV-positive or EBV-negative, and non-lymphoid cell lines. It has been found that BA-D10-4 cells produce growth factors which seem to be essential for their sustained proliferation in vitro, and which increase DNA synthesis in different primate lymphoid cells, independently of the presence of the EBV genome and of the lymphocyte lineage.  相似文献   

10.
Epigenetic mechanisms in mammals   总被引:11,自引:1,他引:10  
DNA and histone methylation are linked and subjected to mitotic inheritance in mammals. Yet how methylation is propagated and maintained between successive cell divisions is not fully understood. A series of enzyme families that can add methylation marks to cytosine nucleobases, and lysine and arginine amino acid residues has been discovered. Apart from methyltransferases, there are also histone modification enzymes and accessory proteins, which can facilitate and/or target epigenetic marks. Several lysine and arginine demethylases have been discovered recently, and the presence of an active DNA demethylase is speculated in mammalian cells. A mammalian methyl DNA binding protein MBD2 and de novo DNA methyltransferase DNMT3A and DNMT3B are shown experimentally to possess DNA demethylase activity. Thus, complex mammalian epigenetic mechanisms appear to be dynamic yet reversible along with a well-choreographed set of events that take place during mammalian development.  相似文献   

11.
Nanos is known as an evolutionarily conserved RNA-binding protein, the function of which is implicated in germ cell development. This includes the maintenance of both the primordial germ cells (PGCs) and germline stem cells. In mice, Nanos2 exhibits a unique feature in which its expression is induced only in the germ cells within the sexually determined male gonad. Nanos2 promotes male germ cell differentiation, while simultaneously suppressing a female program. In addition, Nanos2 is also expressed in the spermatogonial stem cells and functions as an intrinsic factor to maintain the stem cell population during spermatogenesis. Detailed cytological and biochemical analyses in embryonic male gonads in the mouse have revealed that Nanos2 localizes to the P-bodies, a center of RNA processing. It has also been shown that the Nanos2 interacts with protein components of the deadenylation complex involved in the initial step of the RNA degradation pathway.  相似文献   

12.
13.
Hormonal regulation is essential to spermatogenesis. Sertoli cells (SCs) have functions that reach far beyond the physical support of germ cells, as they are responsible for creating the adequate ionic and metabolic environment for germ cell development. Thus, much attention has been given to the metabolic functioning of SCs. During spermatogenesis, germ cells are provided with suitable metabolic substrates, in a set of events mediated by SCs. Multiple signaling cascades regulate SC function and several of these signaling pathways are hormone-dependent and cell-specific. Within the seminiferous tubules, only SCs possess receptors for some hormones rendering them major targets for the hormonal signaling that regulates spermatogenesis. Although the mechanisms by which SCs fulfill their own and germ cells metabolic needs are mostly studied in vitro, SC metabolism is unquestionably a regulation point for germ cell development and the hormonal control of these processes is required for a normal spermatogenesis.  相似文献   

14.
Germline development in vertebrates and invertebrates   总被引:13,自引:0,他引:13  
In all animals information is passed from parent to offspring via the germline, which segregates from the soma early in development and undergoes a complex developmental program to give rise to the adult gametes. Many aspects of germline development have been conserved throughout the animal kingdom. Here we review the unique properties of germ cells, the initial determination of germ cell fates, the maintenance of germ cell identity, the migration of germ cells to the somatic gonadal primordia and the proliferation of germ cells during development in vertebrates and invertebrates. Similarities in germline development in such diverse organisms as Drosophila melanogaster, Caenorhabditis elegans, Xenopus laevis and Mus musculus will be highlighted. Received 11 December 1998; received after revision 25 January 1999; accepted 25 January 1999  相似文献   

15.
Neurodegenerative disease strikes millions worldwide and there is mounting evidence suggesting that underlying the onset and progression of these debilitating diseases is inappropriate neuronal apoptosis. Recent reports have implicated a family of proteins known as histone deacetylases (HDACs) in various neuronal processes including the neuronal death program. Initial headway in this field has been made largely through the use of broad-spectrum HDAC inhibitors. In fact, pharmacological inhibition of HDAC activity has been shown to protect neurons in several models of neurodegeneration. The observation that HDAC inhibitors can have opposing effects in different paradigms of neurodegeneration suggests that individual members of the HDAC protein family may play distinct roles that could depend on the specific cell type under study. The purpose of this review is to detail work involving the use of HDAC inhibitors within the context of neurodegeneration and examine the roles of individual HDAC members in the nervous system with specific focus on neuronal cell death. Received 25 January 2007; received after revision 3 April 2007; accepted 26 April 2007  相似文献   

16.
Eleocytes are specialized coelomic cells in nereid annelids which assume a central role during germ cell development. They may contain extremely high concentrations of both adenosine monophosphate (AMP) and adenosine diphosphate (ADP) (each >10 mol/ml of cell vol.), whereas the adenosine triphosphate (ATP) content is comparatively low (0.8 mol/ml cell vol.).31P nuclear magnetic, resonance (NMR) studies of living eleocytes suggest the compartmentalization of both AMP and ADP in the large acidic vacuole characteristic for this cell type. Eleocytes are thus capable of storing high concentrations of ADP and AMP without inhibiting energy metabolism, by sequestering these compounds in a separate compartment. The high concentrations of both AMP and ADP in the eleocytes decrease in both males and females during the course of maturation. In eleocytes of male animals, the decline of the high nucleotide concentrations was accompanied by a transient increase of two intracellular nucleosides, inosine and guanosine. This suggests the degradation and further metabolism of nucleotides to the corresponding nucleosides. In culture, eleocytes release both inosine and guanosine into the medium. Both nucleosides are also present in the coelomic fluid, the common compartment for both eleocytes and germ cells. Both male and female germ cells incorporate14C-labelled inosine and guanosine in culture. For oocytes, the further incorporation of [14C]inosine into the RNA fraction could be demonstrated. The large adenylate pools in the eleocytes may be regarded as a store for purine compounds for later use by the growing germ cells to supplement nucleic acid synthesis. The supply of nucleic acid precursors seems to be another specific function of eleocytes related to gametogenesis, in addition to their known synthesis of vitellogenin.  相似文献   

17.
The haspins constitute a newly defined protein family containing a distinctive C-terminal eukaryotic protein kinase domain and divergent N termini. Haspin homologues are found in animals, plants and fungi, suggesting an origin early in eukaryotic evolution. Most species have a single haspin homologue. However, Saccharomyces cerevisiae has two such genes, while Caenorhabditis elegans has at least three haspin homologues and approximately 16 haspin-related genes. Mammalian haspin genes have features of retrogenes and are strongly expressed in male germ cells and at lower levels in some somatic tissues. They encode nuclear proteins with serine/threonine kinase activity. Murine haspin is reported to inhibit cell cycle progression in cell lines. One of the S. cerevisiae homologues, ALK1, is a member of the CLB2 gene cluster that peaks in expression at M phase and thus may function in mitosis. Therefore, the haspins are an intriguing group of kinases likely to have important roles during or following both meiosis and mitosis.  相似文献   

18.
Signal transduction via the stem cell factor receptor/c-Kit   总被引:6,自引:0,他引:6  
Together with its ligand, stem cell factor, the receptor tyrosine kinase c-Kit is a key controlling receptor for a number of cell types, including hematopoietic stem cells, mast cells, melanocytes and germ cells. Gain-of-function mutations in c-Kit have been described in a number of human cancers, including testicular germinomas, acute myeloid leukemia and gastrointestinal stromal tumors.Stimulation of c-Kit by its ligand leads to dimerization of receptors, activation of its intrinsic tyrosine kinase activity and phosphorylation of key tyrosine residues within the receptor. These phosphorylated tyrosine residues serve as docking sites for a number of signal transduction molecules containing Src homology 2 domains, which will thereby be recruited to the receptor and activated many times through phosphorylation by the receptor. This review discusses our current knowledge of signal transduction molecules and signal transduction pathways activated by c-Kit and how their activation can be connected to the physiological outcome of c-Kit signaling.  相似文献   

19.
Regulation of cell division requires the integration of signals implicated in chromatin reorganization and coordination of its sequential changes in mitosis. Vaccinia-related kinase 1 (VRK1) and Aurora B (AURKB) are two nuclear kinases involved in different steps of cell division. We have studied whether there is any functional connection between these two nuclear kinases, which phosphorylate histone H3 in Thr3 and Ser10, respectively. VRK1 and AURKB are able to form a stable protein complex, which represents only a minor subpopulation of each kinase within the cell and is detected following nocodazole release. Each kinase is able to inhibit the kinase activity of the other kinase, as well as inhibit their specific phosphorylation of histone H3. In locations where the two kinases interact, there is a different pattern of histone modifications, indicating that there is a local difference in chromatin during mitosis because of the local complexes formed by these kinases and their asymmetric intracellular distribution. Depletion of VRK1 downregulates the gene expression of BIRC5 (survivin) that recognizes H3-T3ph, both are dependent on the activity of VRK1, and is recovered with kinase active murine VRK1, but not with a kinase-dead protein. The H3–Thr3ph–survivin complex is required for AURB recruitment, and their loss prevents the localization of ACA and AURKB in centromeres. The cross inhibition of the kinases at the end of mitosis might facilitate the formation of daughter cells. A sequential role for VRK1, AURKB, and haspin in the progression of mitosis is proposed.  相似文献   

20.
The avian embryo presents a tremendous challenge for those interested in accessing and manipulating the avian germ line. By far the most successful method of gene transfer is by retrovirus vector. The efficacy of retrovirus vectors has been demonstrated by germ line insertion of replication-competent retroviruses as well as the insertion of replication-defective retrovirus vectors carrying bacterial marker genes. Retroviral vectors have also been shown to be useful for the transfer and expression of genes in somatic cells. Further, germ line transgenesis has been reported in both the chicken and the Japanese quail. In addition, several alternative gene transfer methods are under development. These include transfection of avian sperm, development of germ line chimeras using primordial germ cells and blastodermal cells, and the development of embryonic stem cell lines. Potentially, basic research and the poultry industry will derive substantial benefit from this revolutionary technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号