首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
This article applies the Bayesian Vector Auto-Regressive (BVAR) model to key economic aggregates of the EU-7, consisting of the former narrow-band ERM members plus Austria, and the EU-14. This model appears to be useful as an additional forecasting tool besides structural macroeconomic models, as is shown both by absolute forecasting performance and by a comparison of ex-post BVAR forecasts with forecasts by the OECD. A comparison of the aggregate models to single-country models reveals that pooling has a strong impact on forecast errors. If forecast errors are interpreted as shocks, shocks appear to be—at least in part—asymmetric, or countries react differently to shocks. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
The analysis and forecasting of electricity consumption and prices has received considerable attention over the past forty years. In the 1950s and 1960s most of these forecasts and analyses were generated by simultaneous equation econometric models. Beginning in the 1970s, there was a shift in the modeling of economic variables from the structural equations approach with strong identifying restrictions towards a joint time-series model with very few restrictions. One such model is the vector auto regression (VAR) model. It was soon discovered that the unrestricted VAR models do not forecast well. The Bayesian vector auto regression (BVAR) approach as well the error correction model (ECM) and models based on the theory of co integration have been offered as alternatives to the simple VAR model. This paper argues that the BVAF., ECM, and co integration models are simply VAR models with various restrictions placed on the coefficients. Based on this notion of a restricted VAR model, a four-step procedure for specifying VAR forecasting models is presented and then applied to monthly data on US electricity consumption and prices.  相似文献   

3.
This paper compares the out-of-sample forecasting accuracy of a wide class of structural, BVAR and VAR models for major sterling exchange rates over different forecast horizons. As representative structural models we employ a portfolio balance model and a modified uncovered interest parity model, with the latter producing the more accurate forecasts. Proper attention to the long-run properties and the short-run dynamics of structural models can improve on the forecasting performance of the random walk model. The structural model shows substantial improvement in medium-term forecasting accuracy, whereas the BVAR model is the more accurate in the short term. BVAR and VAR models in levels strongly out predict these models formulated in difference form at all forecast horizons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号