首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
支持向量机的性能与核函数的参数及惩罚系数C有很大关系.利用Lozi’s映射的较好遍历性,在粒子群优化算法中引入Lozi’s映射的混沌思想,提出基于混沌粒子群优化算法的SVM参数优化方法.仿真实验表明,该算法能有效提高整个迭代搜索的收敛速度和精度,从而更好地优化SVM参数.  相似文献   

2.
支持向量机的参数选择决定了其学习性能和泛化能力,由于在参数的选择范围内可选择的数量是无穷的,在多个参数中盲目搜索最优参数是需要极大的时间代价,并且很难逼近最优。基于此,提出一种基于混沌粒子群的支持向量机参数选择算法。混沌粒子群优化算法是一种全局搜索方法,在选取SVM参数时,不必考虑模型的复杂度和变量维数.仿真表明,混沌粒子群优化算法是选取SVM参数的有效方法,可以取得令人满意的效果。  相似文献   

3.
本文提出一种SVM参数优化的新方法.应用遗传算法先对SVM参数进行初步的优化,把得到的优化结果邻近的一段区域再作为粒子群算法的搜索区间进行二次优化,以提高支持向量机的泛化能力,缩短SVM参数寻优的时间.仿真实验表示,该方法在样本数据缺失的情况下,同样具有较好的泛化能力.  相似文献   

4.
粒子群算法优化RBF-SVM沙尘暴预报模型参数   总被引:1,自引:0,他引:1  
为提高沙尘暴的预报准确率,针对目前已出现的RBF—SVM沙尘暴预报模型中的参数优化进行研究.利用基本粒子群优化算法(SPSO算法)中粒子速度及其位置与RBF—SVM模型中参数对相对应,对沙尘暴进行预报,为解决SPSO算法易陷入局部解的缺陷,提出了惯性权值自适应调节的改进粒子群算法(WPSO算法),并对沙尘暴RBF—SVM模型参数进行了优化.仿真结果表明,无论是SPSO算法,还是WPSO算法,在优化RBF—SVM沙尘暴预报模型参数方面都表现出了良好的性能,分别比已有的SVM方法的预报准确率提高了22.3%和45.3%.  相似文献   

5.
为了降低制粉系统球磨机的能耗率,对球磨机进行了运行优化的研究.在运行优化过程中,为了获得运行优化的目标模型,运用支持向量回归机对制粉出力进行了软测量建模,实现了制粉出力的在线软计算,得到了制粉单耗的计算模型.在此基础上,将混沌遍历的思想引入粒子群优化算法,提出了一种新的混沌遍历粒子群算法,该改进粒子群算法具有较快的搜索速度及全局收敛的特点.将该改进粒子群算法用于球磨机运行目标的优化从而获得最佳运行参数值.研究结果表明,运用所建立的运行优化目标模型及改进的优化算法可以获得球磨机的最佳运行优化参数,该研究具有重要的工程应用价值.  相似文献   

6.
提出了一种改进的支持向量机(SVM)混沌时间序列预测精度的方法。对于模型参数估计,引入混沌粒子群优化算法(CPSO)实现全局寻优,利用支持向量回归实现非线性系统的建模和预测。对Mackey-Glass混沌时间序列进行了预测实验的结果表明,本文方法能对Mackey-Glass混沌时间序列进行准确预测。  相似文献   

7.
提出了一种改进的支持向量机(SVM)混沌时间序列预测精度的方法.对于模型参数估计,引入混沌粒子群优化算法(CPSO)实现全局寻优,利用支持向量回归实现非线性系统的建模和预测.对Mackey-Glass混沌时间序列进行了预测实验的结果表明,本文方法能对Mackey-Glass混沌时间序列进行准确预测.  相似文献   

8.
采用混沌粒子群优化算法的水质模型参数辨识   总被引:2,自引:0,他引:2  
提出了一种新的适用于水质模型参数辨识的混沌粒子群优化(LCPSO)算法.与粒子群优化(PSO)算法相比,该算法将Logistic混沌搜索嵌入到PSO算法中,利用混沌变量产生初始粒群,并对子代部分粒子群体进行微小扰动,随着搜索过程的深入逐步调整扰动幅度,以克服PSO算法的早熟、易陷入局部极值等固有缺陷.采用标准测试函数,将该算法与遗传算法(GA)和PSO算法进行比较,证明了其收敛速度和寻优能力的优越性.采用实测水质数据,将LCPSO算法应用于具有一定工程价值和复杂程度的Dobbins-Camp BOD-DO水质模型的参数辨识.结果显示,所得水质数据与实测值误差平方和仅为0.150 3,且相对误差在±0.2%范围内,故该算法可为水质模型的参数辨识提供一条新的途径.  相似文献   

9.
廖淑娇 《科学技术与工程》2012,12(11):2660-2664
目前,支持向量机( SVM)常用的参数寻优方法存在易陷入局部极值的缺点,而其常用的核函数的逼近精度也有待提高.基于混沌映射的遍历性与随机性和小波变换的局部分析与特征提取能力,提出了一种混沌粒子群优化小波支持向量机(CPSO-WSVM)的算法,并应用它构建汇率预测模型.实验结果表明,相比传统的粒子群优化高斯核SVM(PSO-GSVM)的算法,CPSO-WSVM算法大大提高了预测的精度和效率,应用效果好.  相似文献   

10.
基于自适应混沌变异粒子群算法的地震参数反演   总被引:2,自引:0,他引:2  
提出了一种改进的基于自适应混沌变异的粒子群优化算法来解决地震参数反演问题.该算法提出自适应飞行策略,根据搜索能力对粒子群进行划分,增强了子群间的协同能力,使算法具有良好的全局寻优能力;两阶段混沌变异策略能够在粒子进化的不同阶段进行自适应性搜索,使算法具有较高的搜索精度.实验结果表明,该算法可有效避免标准PSO算法的早熟收敛,具有寻优能力强、搜索精度高、稳定性好等优点.首次将该算法应用于地震参数反演问题,结果表明该算法提高了反演精度且不受初始模型影响,能够较好地解决地震参数反演问题.  相似文献   

11.
针对网络流量的时变性和非平稳性特点,为提高网络流量预测精度,提出一种“多子种群”机制的粒子群算法和支持向量机的网络流量预测模型(Multi-Subpopulation Particle Swarm Opti-mization and Support Vector Machine,MSPSO-SVM).首先支持向量机(Support Vector Machine,SVM)参数编码成粒子位置串,并根据网络训练集的交叉验证误差最小作为参数优化目标,然后通过粒子间信息交流找到最优SVM参数,并引入“多子种群”机制,解决粒子群优化(Particle SwarmOptimization,PSO)算法的早熟停滞缺陷,最后根据最优参数建立网络流量预测模型,并采用实际网络流量数据进行仿真测试.结果表明,相对于其他预测模型,MSPSO-SVM可以获得更优的SVM参数,网络流量预测精度得以提高,更加适用于复杂多变的网络流量预测.  相似文献   

12.
为应对当前复杂非线性的宏观经济形势与电力消耗情况,本文提出了一种自适应粒子群算法改进的最小二乘支持向量机负荷预测模型。根据粒子群中粒子的成熟程度对其进行分类,对不同类别的粒子分别采取不同的位置更新方式,可以保持粒子种群多样性,避免造成局部最优。利用自适应粒子群算法优化最小二乘支持向量机的模型参数,经过实证分析能够一定程度提高模型的预测精度,可以为中长期负荷预测工作提供一些的参考。  相似文献   

13.
The performance of the support vector machine models depends on a proper setting of its parameters to a great extent. A novel method of searching the optimal parameters of support vector machine based on chaos particle swarm optimization is proposed. A multifault classification model based on SVM optimized by chaos particle swarm optimization is established and applied to the fault diagnosis of rotating machines. The results show that the proposed fault classification model outperforms the neural network trained by chaos particle swarm optimization and least squares support vector machine, and the precision and reliability of the fault classification results can meet the requirement of practical application. It indicates that chaos particle swarm optimization is a suitable method for searching the optimal parameters of support vector machine.  相似文献   

14.
提出了一种改进的混沌粒子群优化混合算法.该算法利用信息交换机制将两组种群分别用差分进化算法和粒子群算法进行协同进化,并且将混沌变异操作引入其中,加强算法的局部搜索能力.通过对3个标准函数进行测试,仿真结果表明该算法与差分进化粒子群优化(DEPSO)算法相比,全局搜索能力和抗早熟收敛性能大大提高.  相似文献   

15.
The performance of the support vector machine models depends on a proper setting of its parameters to a great extent.A novel method of searching the optimal parameters of support vector machine based on chaos particle swarm optimization is proposed.A multi-fault classification model based on SVM optimized by chaos particle swarm optimization is established and applied to the fault diagnosis of rotating machines.The results show that the proposed fault classification model outperforms the neural network trai...  相似文献   

16.
为了克服神经网络存在的收敛速度慢、容易陷入局部极值等缺点,提出基于粒子群优化支持向量机(PSO-SVM)的黄金价格预测方法,以影响黄金价格的美元走势、世界黄金储备、石油价格等因素为输入,黄金价格为输出.用粒子群优化算法选择合适的支持向量机参数,对支持向量回归机进行训练.应用训练完成的支持向量回归机预测下一年的黄金价格.结果证明,PSO-SVM的预测精度高于BP神经网络,PSO-SVM适用于黄金价格预测.  相似文献   

17.
基于PSO参数辨识SVM的中长期径流预测研究   总被引:2,自引:0,他引:2  
以径向基函数作为核函数,利用微粒群(PSO)算法的全局寻优特性进行支持向量机(SVM)的参数辩识.在微粒群搜索参数前,先对参数进行指数变换,使[0,1]和[1,∞]有着相同的搜索概率.微粒群算法的适应值函数是以支持向量机模型的推广能力为标准的,讨论了测试样本的最小误差和留一法对支持向量机学习方法推广能力的两种估计.最后...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号