首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Angers S  Li T  Yi X  MacCoss MJ  Moon RT  Zheng N 《Nature》2006,443(7111):590-593
  相似文献   

9.
10.
Packaging of proteins from the endoplasmic reticulum into COPII vesicles is essential for secretion. In cells, most COPII vesicles are approximately 60-80?nm in diameter, yet some must increase their size to accommodate 300-400?nm procollagen fibres or chylomicrons. Impaired COPII function results in collagen deposition defects, cranio-lenticulo-sutural dysplasia, or chylomicron retention disease, but mechanisms to enlarge COPII coats have remained elusive. Here, we identified the ubiquitin ligase CUL3-KLHL12 as a regulator of COPII coat formation. CUL3-KLHL12 catalyses the monoubiquitylation of the COPII-component SEC31 and drives the assembly of large COPII coats. As a result, ubiquitylation by CUL3-KLHL12 is essential for collagen export, yet less important for the transport of small cargo. We conclude that monoubiquitylation controls the size and function of a vesicle coat.  相似文献   

11.
Xie Q  Guo HS  Dallman G  Fang S  Weissman AM  Chua NH 《Nature》2002,419(6903):167-170
  相似文献   

12.
13.
N-glycosylation of proteins in the endoplasmic reticulum (ER) has a central role in protein quality control. Here we report that N-glycan serves as a signal for degradation by the Skp1-Cullin1-Fbx2-Roc1 (SCF(Fbx2)) ubiquitin ligase complex. The F-box protein Fbx2 (ref. 4) binds specifically to proteins attached to N-linked high-mannose oligosaccharides and subsequently contributes to ubiquitination of N-glycosylated proteins. Pre-integrin beta 1 is a target of Fbx2; these two proteins interact in the cytosol after inhibition of the proteasome. In addition, expression of the mutant Fbx2 Delta F, which lacks the F-box domain that is essential for forming the SCF complex, appreciably blocks degradation of typical substrates of the ER-associated degradation pathway. Our results indicate that SCF(Fbx2) ubiquitinates N-glycosylated proteins that are translocated from the ER to the cytosol by the quality control mechanism.  相似文献   

14.
TNF-RII and c-IAP1 mediate ubiquitination and degradation of TRAF2   总被引:18,自引:0,他引:18  
Li X  Yang Y  Ashwell JD 《Nature》2002,416(6878):345-347
Tumour necrosis factor-alpha (TNF-alpha) is a proinflammatory mediator that exerts its biological functions by binding two TNF receptors (TNF-RI and TNF-RII), which initiate biological responses by interacting with adaptor and signalling proteins. Among the signalling components that associate with TNF receptors are members of the TNF-R-associated factor (TRAF) family. TRAF2 is required for TNF-alpha-mediated activation of c-Jun N-terminal kinase (JNK), contributes to activation of NF-kappaB, and mediates anti-apoptotic signals,. TNF-RI and TNF-RII signalling complexes also contain the anti-apoptotic ('inhibitor of apoptosis') molecules c-IAP1 and c-IAP2 (refs 5, 6), which also have RING domain-dependent ubiquitin protein ligase (E3) activity. The function of IAPs in TNF-R signalling is unknown. Here we show that binding of TNF-alpha to TNF-RII induces ubiquitination and proteasomal degradation of TRAF2. Although c-IAP1 bound TRAF2 and TRAF1 in vitro, it ubiquitinated only TRAF2. Expression of wild-type c-IAP1, but not an E3-defective mutant, resulted in TRAF2 ubiquitination and degradation. Moreover, E3-defective c-IAP1 prevented TNF-alpha-induced TRAF2 degradation and inhibited apoptosis. These findings identify a physiologic role for c-IAP1 and define a mechanism by which TNF-RII-regulated ubiquitin protein ligase activity can potentiate TNF-induced apoptosis.  相似文献   

15.
16.
Skp2 and its cofactor Cks1 are the substrate-targeting subunits of the SCF(Skp2-Cks1) (Skp1/Cul1/F-box protein) ubiquitin ligase complex that regulates entry into S phase by inducing the degradation of the cyclin-dependent kinase inhibitors p21 and p27 (ref. 1). Skp2 is an oncoprotein that often shows increased expression in human cancers; however, the mechanism that regulates its cellular abundance is not well understood. Here we show that both Skp2 and Cks1 proteins are unstable in G1 and that their degradation is mediated by the ubiquitin ligase APC/C(Cdh1) (anaphase-promoting complex/cyclosome and its activator Cdh1). Silencing of Cdh1 by RNA interference in G1 cells stabilizes Skp2 and Cks1, with a consequent increase in p21 and p27 proteolysis. Depletion of Cdh1 also increases the percentage of cells in S phase, whereas concomitant downregulation of Skp2 reverses this effect, showing that Skp2 is an essential target of APC/C(Cdh1). Expression of a stable Skp2 mutant that cannot bind APC/C(Cdh1) induces premature entry into S phase. Thus, the induction of Skp2 and Cks1 degradation in G1 represents a principal mechanism by which APC/C(Cdh1) prevents the unscheduled degradation of SCF(Skp2-Cks1) substrates and maintains the G1 state.  相似文献   

17.
18.
The F-box protein TIR1 is an auxin receptor   总被引:9,自引:0,他引:9  
Dharmasiri N  Dharmasiri S  Estelle M 《Nature》2005,435(7041):441-445
  相似文献   

19.
Rauh NR  Schmidt A  Bormann J  Nigg EA  Mayer TU 《Nature》2005,437(7061):1048-1052
Vertebrate eggs awaiting fertilization are arrested at metaphase of meiosis II by a biochemical activity termed cytostatic factor (CSF). This activity inhibits the anaphase-promoting complex/cyclosome (APC/C), a ubiquitin ligase that triggers anaphase onset and mitotic/meiotic exit by targeting securin and M-phase cyclins for destruction. On fertilization a transient rise in free intracellular calcium causes release from CSF arrest and thus APC/C activation. Although it has previously been shown that calcium induces the release of APC/C from CSF inhibition through calmodulin-dependent protein kinase II (CaMKII), the relevant substrates of this kinase have not been identified. Recently, we characterized XErp1 (Emi2), an inhibitor of the APC/C and key component of CSF activity in Xenopus egg extract. Here we show that calcium-activated CaMKII triggers exit from meiosis II by sensitizing the APC/C inhibitor XErp1 for polo-like kinase 1 (Plx1)-dependent degradation. Phosphorylation of XErp1 by CaMKII leads to the recruitment of Plx1 that in turn triggers the destruction of XErp1 by phosphorylating a site known to serve as a phosphorylation-dependent degradation signal. These results provide a molecular explanation for how the fertilization-induced calcium increase triggers exit from meiosis II.  相似文献   

20.
Wang KL  Yoshida H  Lurin C  Ecker JR 《Nature》2004,428(6986):945-950
Ethylene gas is used as a hormone by plants, in which it acts as a critical growth regulator. Its synthesis is also rapidly evoked in response to a variety of biotic and abiotic stresses. The Arabidopsis ethylene-overproducer mutants eto2 and eto3 have previously been identified as having mutations in two genes, ACS5 and ACS9, respectively; these encode isozymes of 1-aminocyclopropane-1-carboxylic acid synthase (ACS), which catalyse the rate-limiting step in ethylene biosynthesis. Here we report that another ethylene-overproducer mutation, eto1, is in a gene that negatively regulates ACS activity and ethylene production. The ETO1 protein directly interacts with and inhibits the enzyme activity of full-length ACS5 but not of a truncated form of the enzyme, resulting in a marked accumulation of ACS5 protein and ethylene. Overexpression of ETO1 inhibited induction of ethylene production by the plant growth regulator cytokinin, and promoted ACS5 degradation by a proteasome-dependent pathway. ETO1 also interacts with CUL3, a constituent of ubiquitin ligase complexes in which we propose that ETO1 serves as a substrate-specific adaptor protein. ETO1 thus has a dual mechanism, inhibiting ACS enzyme activity and targeting it for protein degradation. This permits rapid modulation of the concentration of ethylene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号