首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 178 毫秒
1.
小波变换在激光陀螺信号处理中的应用与实现   总被引:2,自引:1,他引:1  
刘建锋  江涌  丁传红 《系统仿真学报》2008,20(3):716-719,750
针对动态条件下激光陀螺(RLG)随机噪声其非平稳和非正态分布的特性,提出了基于小波变换的RLG降噪方法,研究了小波去噪和Lipschitza指数奇异值检测的原理,给出了离散Db4小波滤波器的硬件实现方法,采用双正交静态小波基对RLG信号进行不同尺度的分解,通过不同小波基及低通滤波效果的比较,发现Db4小波具有较好的去噪性,其分解和重建滤波器系数也十分简单,验证了小波变换在陀螺仪信号去噪中的可行性,在用Db4滤波后的数据进行导航解算时,发现导航误差有很大的减小,研究成果对导航系统精度的提高有着重要的参考价值。  相似文献   

2.
旋转自动补偿捷联惯导系统技术研究   总被引:6,自引:1,他引:5  
利用旋转法补偿陀螺漂移是提高捷联惯导系统精度的有效途径之一。由于旋转的引入,惯性测量单元中陀螺的常值漂移将被调制成周期性信号,通过积分运算可以有效地消除常值陀螺的漂移影响。提出了一种新的单轴旋转调制方案,对该方案进行了理论推导、分析和仿真。与以往的单轴旋转方式及未采用旋转方式时的导航误差进行了比较,结果表明本方案可以消除所有方向上陀螺常值漂移的影响,从而大大提高位置和姿态精度。  相似文献   

3.
为提高单轴旋转捷联惯导系统长时间导航精度,提出了一种精确标校轴向陀螺漂移的方法。在静基座条件下分析了轴向陀螺漂移、初始姿态和航向角误差对系统经纬度影响,将水平阻尼网络引入到导航算法流程中以抑制系统舒拉振荡误差。建立了经纬度误差与轴向陀螺漂移、初始航向角误差之间的数学模型,并设计了一种合理的标校流程,采用最小二乘法对轴向陀螺漂移进行精确标校。对该方法进行了数学仿真与实际系统验证实验。实验结果表明,当系统陀螺漂移误差为0.01(°)/h时,经过12.5 h精确标校后轴向陀螺漂移的辨识精度达到0.001(°)/h,系统的定位精度优于1.5 n mile/48 h。  相似文献   

4.
为分析旋转惯导系统误差自补偿原理,分别推导陀螺漂移的随机常值分量、时间相关分量以及随机游走分量在捷联惯导系统和旋转惯导系统中造成的角度误差及其统计特性,并进行对比。结果表明,旋转可将陀螺漂移中的常值分量完全调制并能抑制时间相关分量的影响,但对随机游走分量造成的误差无调制效果。采用0.1(°)/h漂移率的陀螺和0.2 mg偏置的加速度计研制旋转惯导系统样机并进行导航试验,试验结果表明,该系统可以达到0.2 n mile/h导航精度。  相似文献   

5.
用简单的动力学理论可以得到真空旋转干涉仪的萨纳克相移的一次近似值。但要处理光在介电物质(如光纤陀螺)中的传播就比较复杂。此时不但要产生斐索(Fizeau)和多普勒两种效应,而且还要补偿折射率影  相似文献   

6.
光纤捷联惯导系统(SINS)中,光纤陀螺常值漂移是导致SINS导航误差的主要因素.阐述了单轴旋转误差自补偿技术的基本原理,针对传统单轴旋转调制不能补偿与旋转轴平行方向上的陀螺常值漂移误差,给出了一种改进的单轴旋转式惯导系统误差自动补偿方法.将惯性测量组件(Inertial Measurement Unit,IMU)倾斜安装,不与旋转轴正交或重合,理论分析了这种配置方案可以有效地补偿一般单轴旋转方案中不能补偿的光纤陀螺常值漂移误差,从而大大提高系统的导航精度,最后给出了仿真结果.仿真结果表明,改进的单轴旋转方案能够明显的提高惯导系统的精度.  相似文献   

7.
单轴旋转SINS方位陀螺漂移精确估计方法   总被引:1,自引:0,他引:1  
为了减小方位陀螺漂移对单轴旋转捷联惯性导航系统(strapdown inertial navigation system, SINS)长时间定位精度影响,提出了一种方位陀螺漂移在线估计方法。对SINS误差参数进行分析,指出东向陀螺漂移和方位失准角精度决定方位陀螺漂移估计值精度。利用优化后的卡尔曼(Kalman)滤波器在线估计SINS失准角并进行补偿,在此基础上进一步使用Kalman滤波器估计惯性测量单元(inertial measurement unit, IMU)误差。进行了转台三轴摇摆和车载行进间验证实验,车载行进间验证实验中,IMU误差估计完成后转入到纯惯性导航,其12 h的定位误差为2.12n mile,系统定位精度满足中等精度单轴旋转SINS长时间导航需求。  相似文献   

8.
旋转捷联惯导系统精对准技术   总被引:5,自引:1,他引:4  
针对惯性器件常值偏差对捷联惯导系统导航精度的影响,提出了一种单轴旋转调制方案并建立该系统误差方程,将系统中陀螺常值漂移和加速度计零位误差调制成周期变化的量。通过改变惯导系统误差模型中的捷联矩阵来改善系统的可观测性。利用谱条件数法计算出惯性测量单元(inertial measurement unit, IMU)在静止和旋转状态下捷联系统的可观测度,采用卡尔曼滤波方法实现了旋转捷联系统的精对准。仿真结果表明,IMU旋转状态下的对准方法消除了陀螺常值漂移和加速度计零偏对系统对准精度的影响,大大提高了对准精度。  相似文献   

9.
传统捷联惯导采用三轴正交配置,存在单一传感器故障直接引发整个系统失效,且导航误差随时间累积快等问题。为解决这些问题,提出了一种将四陀螺冗余配置和双轴旋转调制相结合的捷联惯导导航方法。构建多指标约束的冗余优化准则,通过器件级配置方式,设计了基于四面体结构的四陀螺冗余配置方案,并在此基础上引入八次序双轴旋转调制方法,调制3个轴向的等效陀螺漂移。仿真结果表明,所提方法能够实现系统可靠性和导航精度的双重提升,具有重要的工程应用价值。  相似文献   

10.
在光学陀螺惯导系统中,利用系统旋转自动补偿可以有效地减小惯性元件漂移对系统导航精度的影响,从而实现高精度、低成本的惯性导航要求。首先从光学陀螺旋转式惯导系统的误差传播方程出发,推导了系统中由于光学陀螺安装误差引起的数学平台角度误差表达式。以此为基础,分析了旋转式系统中的安装误差引起的误差效应及自动补偿安装误差所应满足的条件,为系统设计和精度分析提供了理论参考。  相似文献   

11.
This paper describes a novel approach for identifying the Z-axis drift of the ring laser gyroscope (RLG) based on ge-netic algorithm (GA) and support vector regression (SVR) in the single-axis rotation inertial navigation system (SRINS). GA is used for selecting the optimal parameters of SVR. The latitude error and the temperature variation during the identification stage are adopted as inputs of GA-SVR. The navigation results show that the proposed GA-SVR model can reach an identification accuracy of 0.000 2 (?)/h for the Z-axis drift of RLG. Compared with the ra-dial basis function-neural network (RBF-NN) model, the GA-SVR model is more effective in identification of the Z-axis drift of RLG.  相似文献   

12.
在单轴旋转惯导系统中,轴向陀螺漂移是影响系统导航精度的重要因素。为了提高惯导系统的导航精度,采用混沌粒子群算法(chaos particle swarm optimization, CPSO)优化的最小二乘支持向量机(least squares support vector machine, LSSVM)〖JP+1〗对轴向激光陀螺漂移进行辨识。利用初始对准12 h内系统纬度误差和温度变化量作为LSSVM模型的训练数据,利用CPSO对LSSVM进行参数优化,利用优化后的LSSVM模型对轴向陀螺漂移进行辨识,轴向陀螺漂移辨识精度优于0.000 2 (°)/h, 系统定位误差优于1 nm/72 h。试验结果表明,CPSO是选取LSSVM参数的有效方法,该方法能够有效地辨识轴向陀螺漂移,具有很高的辨识精度,具有很高的实际应用价值。  相似文献   

13.
为满足舰艇航行的高精度导航要求,提高惯导系统陀螺漂移估计精度,设计了基于扩张状态观测器(extended state observer, ESO)的惯导系统陀螺漂移估计算法。首先引入了惯导系统水平姿态角的ESO估计算法;其次基于惯导系统姿态控制方程,研究并推导了陀螺漂移的ESO估计算法,给出了估计误差的量化分析结论;最后对算法进行了仿真验证。结果表明,基于ESO的陀螺漂移估计方法可在短时间内快速、无超调、高精度地估计出陀螺漂移,当ΔAx=ΔAy=10-5g时,估计的稳态误差约为10-4(°)/h,提高了惯导系统后续导航精度。  相似文献   

14.
新书架     
著者苏联《》出版社1981年出版,224页。 书中介绍了用频率法对任意顺序的非线性陀螺系统进行分析和综合问题。重点介绍陀螺系统的自振研究成果,这些陀螺系统受控于万向支架的干摩擦、机械传动中的活动间隙、不灵敏区、控制电路的限制和滞后现象等。书中详细分析了非线性弹性耦合和弹性耗散耦合陀螺系统的稳定性研究成果。给  相似文献   

15.
建立了一种新型旋转弹丸的7自由度弹道模型,根据该模型对弹丸的弹道特性进行了数值分析,并利用无迹卡尔曼滤波算法对双旋弹的弹道进行重构和滤波,使弹载设备的测量信息更加精确,为制导系统提供更加精确、可靠的测量数据。通过数值仿真的表明:双旋弹和传统旋转弹的主要区别是在其弹轴方向上增加了一个自由度,弹丸前体低速旋转甚至静止不动以提高弹载控制系统的控制精度,后体高速旋转保持其陀螺稳定性。通过无迹卡尔曼滤波算法进行弹道重构能够有效地提高测量数据的精度,消除测量误差,得到较为准确的测量数据。  相似文献   

16.
一种利用星敏感器对陀螺进行在轨标定的算法   总被引:4,自引:2,他引:4  
为确保姿态测量器件长期在轨工作精度、提高姿态确定精度,针对典型的陀螺和星敏感器联合定姿方案,推导了一种星敏感器/陀螺在轨标定算法。考虑到卫星姿态测量过程中的几种主要误差源,建立星敏感器和陀螺标定模型,首先用递推算法对星敏感器单独在轨标定,然后采用Kalman滤波对星敏感器和陀螺同时进行在轨标定,对误差进行实时补偿,有效地提高了星敏感器和陀螺的测量精度,与同类算法相比,为卫星姿态确定提供了更加丰富的信息。最后对该算法进行了数学仿真,仿真结果验证了算法的有效性。  相似文献   

17.
针对在全球导航卫星系统(global navigation satellite system, GNSS)失锁阶段将微陀螺惯性系统作为备用定位系统时,由于微陀螺误差引起的定位误差发散问题,提出了基于后向传播神经网络(back propagation neural network, BPNN)的微陀螺误差估计及定位算法。在GNSS有效阶段为车辆提供定位信息,同时对微陀螺误差进行估计,并利用后向传播神经网络BPNN建立微陀螺误差预测模型,为GNSS失锁阶段车辆定位做准备;在GNSS失锁阶段,利用已建立好的微陀螺误差预测模型估计微陀螺误差,对微陀螺输出信息进行补偿,以抑制由陀螺误差引起的定位误差。最后利用仿真与试验验证了此方法的正确性与有效性。  相似文献   

18.
针对微机械(micro electro mechanical system, MEMS)陀螺输出漂移不确定性,提出采用最小上限滤波(minimum upper-bound filter, MUBF)算法实现MEMS陀螺输出信号降噪处理,该算法将漂移看作陀螺输出信号中的未知干扰,通过获取漂移变化方差上限,利用凸优化动态寻优得到角速率估计。相比卡尔曼滤波算法(Kalman filter, KF),MUBF算法可以在陀螺输出漂移模型未知的情况下工作,弱化陀螺信号降噪处理条件。陀螺静态和动态实验结果表明:MUBF算法能够有效降低陀螺噪声且优于KF算法降噪效果,该算法为MEMS陀螺降噪研究提供新思路。  相似文献   

19.
针对在陀螺控制过程中陀螺基准信号频率和相位角测量不准确,从而导致陀螺控制过程中定位不准确,产生漂移的难题,研究了一种基于DSP FPGA的陀螺控制方法。利用FPGA进行基准信号频率和相位的测量可得到精确的测量量,而通过DSP和FPGA进行数据交换,在DSP中解算陀螺基准信号的频率和相位角以及进动信号,具有高速、实时及算法可升级等特性。实验表明,该方法能够快速、稳定引导陀螺跟踪目标,并且定位准确,不产生漂移。  相似文献   

20.
针对微机电系统(micro electro mechanical system,MEMS)陀螺仪准确度低、噪声大的问题,采用陀螺阵列技术降噪以提高陀螺的使用精度。采用Allan方差法分析陀螺信号误差噪声项,依据分析结果对测量模型进行了简化,利用噪声相关性设计了一种卡尔曼滤波器(Kalman filter,KF)对陀螺阵列进行数据融合,并对最优估计过程进行了改进,降低了数据处理的复杂度和计算量,同时从理论上分析了各参数对阵列性能的影响。为提高滤波器的动态性能,将自回归(autoregressive,AR)模型应用于陀螺真实角速率的建模。采用6个陀螺构成的阵列进行了验证实验。实验结果表明:与单个陀螺相比,陀螺阵列的噪声在静态条件下降低了144.2倍,在恒速率和正弦速率条件下噪声分别降低了18.18倍和5.36倍,证明了此建模方法和融合方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号