首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用剪切法及滑移线场理论,假定斜坡地形条件下掏挖原状土基础土体破裂面为对数螺旋面,推导出在斜坡地形条件下土体极限抗拔承载力简化计算公式.与现有的平地条件下基础抗拔力的研究成果对比,分析证明简化公式的合理性.运用简化理论公式分析,定义土体破裂面扩展影响系数,得知随着斜坡倾角β的增加,基础两侧土体的抗拔承载力降低,高坡侧土体破裂面向桩身方向移动,低坡侧土体破裂面向桩身外侧移动.随着基础埋深的增加,抗拔承载力显著提高,基础两侧土抗力的不均衡性并没有显著改善.倾角β在0°~20°时,基础两侧土抗力均衡性较好.  相似文献   

2.
输电线路裂隙岩体地基锚杆抗拔模型试验研究   总被引:2,自引:0,他引:2  
针对输电线路工程中节理裂隙发育的岩石地基,根据相似理论设计了锚杆室内抗拔模型试验.试验采用正交试验设计方法,选取岩石弹模、锚杆埋深、浆体强度、裂隙角度和裂隙迹长5项参数作为影响因素,分别就各因素对岩石锚杆基础抗拔承载力的影响机理进行了试验研究.结果表明,上述5项因素中岩石弹模与锚杆埋深对抗拔承载力影响显著,且抗拔承载力与岩石弹模及锚杆埋深均成正相关变化关系,其他3项影响因素对岩石锚杆基础的抗拔承载力影响规律不明显.试验还表明,节理裂隙发育的岩石锚杆基础的破坏形式主要有滑移开裂破坏与滑移剪切破坏2种,并且得出了岩石锚杆的传力机制.  相似文献   

3.
运用改装的试验装置和数据采集系统,对锚板在砂土中的抗拔特性进行系统的试验研究。分析不同砂土密实度条件下锚板抗拔力和位移的关系曲线特征,研究不同埋深比下抗拔力、破坏系数和破坏位移的变化规律,并根据破坏力与破坏位移随埋深比的变化趋势得到不同密实状态下的临界埋深比。研究结果表明:砂土密实度对锚板的抗拔性能有非常大的影响,增加砂土的密实度可以大幅度提高锚板的抗拔承载力,并显著减小锚板的位移变形;增加锚板的埋置深度同样可以大幅度提高锚板的抗拔承载力,但抗拔承载力的增加幅度受临界埋深比的限制,临界埋深比随密度增加有增大的趋势。以上试验结果可为建立锚板上拔预测模型提供参考依据。  相似文献   

4.
 假设黄土为符合Mohr-Coulomb 屈服准则的理想弹塑性材料且锚板为刚性体, 采用有限差分模拟软件FLAC3D建立三维数值模型, 利用接触面单元分析联合板索基础锚板上拔过程中黄土变形破坏机理, 研究了锚板抗拔承载力的变化规律及其影响因素。结果表明, 锚板的抗拔承载力随着锚板埋置深度的增加呈现近似线性增大, 但当埋深超过临界深度时锚板抗拔承载力趋于定值;增大锚板面积能够提高总承载力, 但单位面积承载力会下降;相同面积条件下, 圆形锚板抗拔承载力最大, 方形锚板次之, 矩形锚板抗拔承载力随着长宽比的增大而逐渐减小;锚板抗拔承载力随土体抗剪强度的增大而增大, 提升地基土体的抗剪强度指标(特别是黏聚力), 能够有效提高联合板索基础的抗拔承载力。  相似文献   

5.
针对现有临坡地基承载力研究方法中采用竖向均布作用力代替基础埋深影响而不能充分考虑埋深内土体抗剪强度贡献的问题,引入Meyerhof理论.首先,基于临坡条形基础地基的工程特点,通过研究其破坏机理,构建出考虑临坡条形基础埋深内土体抗剪强度作用的单侧滑移破坏模式.然后,在此破坏模式研究基础上,基于Meyerhof理论求解基础埋深内土体抗剪强度影响作用的思路,通过引入刚体极限平衡分析方法,导出了能够反映临坡条形基础埋深内土体抗剪强度作用、基础距坡顶距离、基础两侧埋置深度不同以及基础两侧侧壁与土体摩擦作用影响的临坡条形基础地基极限承载力简化计算公式,较已有研究成果计算方法更简便,更具工程适用性.最后,通过工程实例计算分析并与现有研究分析方法对比分析,表明了本研究方法的可行性与合理性.  相似文献   

6.
《河南科学》2017,(8):1294-1298
采用Abaqus软件中CEL技术对平板锚在均质黏土中的抗拔特性进行大变形有限元分析(LDFE).通过比较大变形有限元分析(LDFE)结果与离心机试验数据、解析解和数值计算结果,发现具有良好的一致性.通过研究不同参数下平板锚附近土体流动机制及其相应的抗拔承载力,分析平板锚埋置深度,长宽比和土体刚度的影响.分析平板锚附近土体流动机制及其相应的抗拔承载力可以发现:1)平板锚的抗拔承载力会随着埋置深度的增加而增加,并在达到临界深度之后保持稳定;2)平板锚的抗拔承载力随土体刚度的增加而增大,随着长宽比的增加而减小;3)当平板锚预埋深度达到一定深度时,可以观察到合理的土体流动破坏机理,相应的拔出承载力趋于稳定.  相似文献   

7.
圆形基础是一种应用广泛的基础形式,而目前基础承载力研究主要集中在条形基础上,对圆形基础研究较少.针对现有圆形基础承载力求解方法中存在的问题,构建了多块体离散破坏模式,同时考虑土体自重、黏聚力及边载因素,求得竖向极限承载力的上限解表达式,并编制了最优化计算程序.将计算结果与已有的滑移线解、上限解、Hansen解以及工程实测资料进行广泛比较,证明该处计算浅埋圆形基础承载力的方法是更加准确合理的.然后根据计算结果分析了圆形基础地基滑裂面特性,发现由于同时考虑了土体重度,计算得到的地基滑裂面范围小于经典的对数螺旋滑裂面,滑裂面范围随内摩擦角的增大而增大,随重度增加而减小,随基础埋深的增大而增大.  相似文献   

8.
为研究输电线路杆塔三角锚固盘钢管插入式基础在承受上拔荷载时锚固盘的受力性能,使用有限元分析软件对钢管插入式基础进行数值模拟分析,研究了锚固件尺寸、混凝土强度、钢管截面和混凝土柱截面对试件抗拔承载性能的影响。结果表明:使用三角锚固盘能够改善锚固盘与钢管焊接部分的应力集中情况,显著提升钢管插入式基础的抗拔承载能力,且混凝土强度越高优势越明显;在一定范围内增加锚固盘尺寸可以提高基础抗拔承载力,提高初始刚度和延性系数,超出范围则影响不明显,最佳的锚固盘尺寸由基础混凝土强度决定;增加混凝土强度、钢管截面尺寸和混凝土柱截面尺寸都可以提高基础的抗拔承载力和初始刚度,延性系数则随混凝土强度的提高先减小后增大,随钢管截面尺寸的提高而减小。  相似文献   

9.
法向承力锚(VLA)是一种新型深海工程系泊基础,锚板的极限抗拔力是反映其工作性能的主要指标.基于假设海底软黏土为符合Mises屈服准则的理想弹塑性材料以及锚板为一刚性体,采用大型有限元软件ABAQUS建立二维有限元模型,利用接触对模拟锚板与周围土体间的相互作用.从锚板粗糙程度、埋置深度、埋置角度、宽厚比以及荷载作用位置等多角度研究影响VLA极限抗拔力的因素及其影响规律.结果表明:当锚板埋深较小时,法向承载力系数随着锚板埋深和埋置角度增加而逐渐增大;当法向荷载作用在锚板形心处时其法向承载力系数大于法向荷载作用在非形心处时的法向承载力系数.  相似文献   

10.
为进一步探讨挤扩支盘桩的承载性能及桩土相互作用机理,依托输电线路实际工程,开展了挤扩支盘桩上拔现场静载试验及有限元数值模拟,得到了支盘桩单桩抗拔承载性能,分析了支盘桩荷载传递规律、桩周土体变形规律、桩土相对位移变化情况等,探讨了支盘数量、支盘间距及水平荷载对支盘桩抗拔承载力的影响规律。结果表明:同等条件下单盘支盘桩抗拔承载力比等径灌注桩提高15.3%;轴力分布曲线及桩土相对位移在支盘位置发生突变;塑性应变主要发生在支盘上部的土体中;水平荷载的存在能提高支盘桩的抗拔承载力;一定范围内支盘桩的抗拔承载力随支盘数量及支盘间距的增加而增大,支盘间距不宜小于2.5倍支盘直径,在实际工程应用时,应予以考虑,合理确定支盘的数量或支盘间距。  相似文献   

11.
目的分析扩体抗拔构件破坏模式,并以此建立承载力计算方法,为扩体抗拔构件工程实践提供参考.方法通过大比例尺室内模型试验,研究扩体抗拔构件的破坏模式,将扩体抗拔构件分为浅埋和深埋两种形式,分析其拉拔破坏特征.基于局部指数函数滑裂面假设,利用土体的极限平衡,建立浅埋扩体抗拔构件抗拔承载力的计算方法;根据Vesic圆孔扩张理论,建立考虑扩体段顶阻对其侧阻影响的深埋扩体抗拔构件抗拔承载力的计算方法.结果用建立的计算方法对室内试验模型及现场试验实例进行抗拔承载力计算,计算结果与实测结果较为一致.结论建立的扩体抗拔构件承载力计算方法分为浅埋和深埋两种形式,符合扩体抗拔构件破坏规律,算例计算承载力与实测承载力的基本一致性表明建立的计算方法合理可行,可为扩体抗拔构件工程实践提供参考.  相似文献   

12.
饱和黏土中倾斜圆形锚板承载力分析   总被引:1,自引:0,他引:1  
采用三维弹塑性有限元方法计算并比较了均质饱和黏土中圆形锚板在不同埋深和上拔倾角下的承载力,阐明了埋深和倾角对锚板承载力的影响,并给出了倾斜圆形锚板承载力的简单计算公式.研究表明,倾角对浅埋锚板的承载力影响较大,当锚板处于深埋状态(大于7D),倾角对承载力的影响可以忽略;锚板承载力随埋深的增加而增加,当锚板埋深超过7D,锚板承载力不再变化;对于浅埋锚板,锚板边缘附近的应力要比其他部位高很多,这对工程设计非常重要;土的相对重量是影响锚板周围土体的流动机制和锚土分离的重要因素,当其介于5~7时,锚板与土将会分离.  相似文献   

13.
非线性破坏准则下法向受力条形浅锚抗拔力上限计算方法   总被引:3,自引:0,他引:3  
在上限定理、相关联流动法则基础上,根据非线性破坏准则对法向受力条形浅锚极限抗拔力上限进行计算,其方法是:通过"切线法"引进变量,把锚板上填土的非线性抗剪强度指标ct和φt作为变量参数,对锚板上部填土建立含有变量的速度场,根据外力功率与内部耗能相等原理获得极限抗拔力的目标函数与约束条件;基于MATLAB软件平台,利用"序列二次规划算法"对该问题进行优化求解.计算结果表明:当非线性破坏准则变为线性破坏准则时,计算结果与实际结果相符;非线性参数对锚板的极限抗拔力有重要影响,对非线性岩土体进行线性简化不利于正确评价抗拔基础的承载性能,恰当引入岩土体破坏准则的非线性更加符合工程实际;提高岩土抗剪强度,加大锚板埋深,提高锚板板面粗糙度和锚板倾斜埋置均有利于提高法向受力浅埋条锚基础抗拔承载力.  相似文献   

14.
考虑土体材料的非线性特征,用非线性强度准则及其关联流动法则构造临坡条形锚板上拔时的机动许可速度场,并基于上限定理导出其曲线型破坏模式及抗拔承载力上限解.此后,借助DIC图像关联技术开展了一系列临近砂土边坡条形锚板的室内抗拔模型试验,得到了不同边坡角度及不同临坡比情况下条形锚板的抗拔承载力及上方土体破裂面发展模式.对比结果表明,临坡条形锚板的抗拔承载力与本文上限解计算结果误差在13%以内,土体破裂面模式也基本吻合,从而验证了本文理论解的合理性.最后,对抗拔条形锚板的临界临坡比进行了探讨,分析结果表明临界临坡比随埋置深度和初始黏聚力的增大而增大,随单轴抗拉强度的增大而减小.  相似文献   

15.
采用统一土体移动模型三维解计算盾构施工引起的地下管线平面处土体竖向位移,并基于Pasternak地基模型对地下管线受力模型进行简化,建立单线、双线盾构隧道开挖引起的地下管线三维竖向位移计算公式。将计算结果与实测值进行对比;并探讨了管线材质、管线埋深以及土体损失率改变对管线竖向位移的影响。研究结果表明:计算结果与实测值比较吻合,可以计算单线和双线盾构开挖工况;双线隧道开挖引起的管线竖向位移大于单线隧道引起的管线竖向位移;管线材质和管线埋深的改变对管线最大竖向位移的影响较小,管线最大竖向位移随抗弯刚度增大而减小,随埋深增大而增大;土体损失率的改变对管线最大竖向位移的影响较大,土体损失率越大管线最大竖向位移也越大。  相似文献   

16.
输电线路杆塔接地装置冲击系数及其拟合计算公式   总被引:1,自引:0,他引:1  
选择合适的冲击系数是输电线路杆塔接地装置设计的关键。采用模拟试验分析了各种因素对冲击系数的影响。大量的试验结果表明,冲击系数随冲击电流幅值的增加而减小;随接地体几何尺寸的增加而增加;随土壤电阻率增加而减小。本文通过对试验数据进行回归分析,得出了计算不同接地装置的冲击接地系数的经验公式。模拟试验得到冲击系数值与文献中提供的现场实测结果吻合得较好。研究成果可以为输电线路杆塔接地装置的设计和修订接地规程提供参考。  相似文献   

17.
通过山西黄土地区现场载荷试验资料反演数值计算参数,在验证数值计算方案合理性的基础上,探讨了桩长、桩径、板基埋深和桩基布置形式等因素对上拔荷载作用下的板式中型桩复合基础承载力发挥的影响。结果表明:桩径、桩长、埋深及布桩数目的增加均可有效地提高复合基础整体承载力,但板基础及单桩承载力的发挥程度并未显著提高;对于2×2群桩基础,板基础承载力发挥系数可取0.70~0.80,单桩承载力发挥系数可取0.70~0.90;对于3×3群桩基础,板基础承载力发挥系数可取0.60~0.75;单桩承载力发挥系数可取0.65~0.76。计算结果可为板式中型桩复合基础在黄土地区工程应用中的承载力确定提供参考依据。  相似文献   

18.
花岗岩残积土具有遇水软化的特性,其工程力学特性受含水率变化影响显著,如考虑不周会对基础设计造成不利影响。为了定量分析含水率变化对花岗岩残积土地基承载力的影响,采用室内试验与标准贯入试验,对比浸水前后的地基承载力,分析含水率对地基承载力的影响机制。结果表明:浸水条件显著增大了土体的含水率,含水率增量随深度的增加而显著减小,浸水对花岗岩残积土含水率的影响深度不超过2 m,含水率的增加降低了花岗岩残积土的抗剪强度及地基承载力,造成地基承载力损失率最高可达28.7%,地基承载力损失率随深度增加而减小。在基础设计时,应考虑含水率变化对地基承载力的影响,并根据工程要求确定合理的基础埋深。  相似文献   

19.
通过现场试验研究了砂岩层中基桩的抗拔承载特性,分析了基桩嵌岩段的破坏机理,提出了嵌岩桩极限抗拔承载力的预测公式,将计算结果与试验值和规范计算值进行了比较。研究结果表明:嵌岩桩的上拔荷载-桩顶位移曲线均为陡变型,增加桩长可以有效地增加承载力,但对桩顶位移的影响有限。试验得到桩岩相对位移为20~25 mm,中风化砂岩层侧阻力达到极限,极限抗拔侧阻力为925.4~961.3 kPa。当桩身强度高于桩周岩体时,基桩的抗拔承载力由桩周岩体的抗剪切强度提供,桩的极限侧阻力可以等效为桩周岩体的抗剪切强度。现行规范的计算值偏于保守,与本文试验值的比值为0.18~0.39。  相似文献   

20.
吸力式桶形基础的竖向承载力是工程设计中的重要问题,其承载力主要由桶壁摩阻力、桶尖端承载力及桶内部土体的支撑力三部分组成。在同种砂土地基中桶基础的直径、桶高以及在地基中的埋深直接影响着上述三部分力的大小。分析了桶壁摩阻力和桶尖端承载力随埋深的变化关系式,提出了计算地基承载力的解析表达式。并通过试验数据验证解析式的准确度,结果两者误差均在15%以内,所提出的解析表达式适用于地基承载力的计算。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号