首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
合成了Zn(HNic)2Cl2〔(HNic)表示烟酸〕,用元素分析、红外光谱、热重及差热分析对该配合物进行了表征,并对其热分解过程进行了研究,运用Achar法和Coats-Redfern法,推断出该配合物第一步热分解的非等温动力学方程  相似文献   

2.
七水合硫酸亚铁热分解及脱水非等温动力学研究   总被引:3,自引:0,他引:3  
用TG,DTG技术研究了FeSO47H2O的热分解过程.运用Achar法与CoatsRedfern法对非等温动力学数据进行分析,推断出第一步和第二步热分解脱水反应的可能机理及相应的动力学补偿效应的表达式  相似文献   

3.
安乃近的热分解过程和热分解非等温动力学   总被引:1,自引:0,他引:1  
采用TG-DTG技术研究了安乃近在静态空气气氛中的非等温热分解过程及其动力学,根据TG曲线并结合红外光谱技术确定了热分解过程中的中间产物及最终产物,运用微分法和积分法对热分解数据进行了分析,推断出了第1步反应的脱水瓜,其动力学方程为da/dt=Ae-^E/RT(1-a_);第2步应为二极反应,其动力学方程为:da/dt=Ae-^E/RT(1-a)2。  相似文献   

4.
本文建立了确定固态热分解非等温反应机制的动力学模型,根据该模型研究了CaCO_3分解的反应动力学。结果表明;不同升温速度条件下CaCO_3分解受不同的反应机制控制.同时;随着升温速度提高.CaCO_3分解的活化能降低。  相似文献   

5.
目的:研究了腺苷的热解过程及非等温动力学,方法:采用了TG-DTG热重仪与红外技术测定腺苷的热解曲线,用Ozawa多升温速率法以及Achar微分法和Coats-Redlfern积分法确定热分解函数,结果:由TG及IR解析了热解过程并得到动力学参数活活化能E,指前因子A,结论:腺苷的热解产物为腺嘌吟,第1步热分解动力学表达式为:dα/dt=Ae^-E/RT2(1-α)[-1N(1-α)]^1/3.  相似文献   

6.
本文对Cr2(Inic)3Cl3(H2O)3.5H2O配合物进行了热分解脱水反应非等温动力学研究,运用Achar法与Coats-Redfern法,推断该热分解脱水反应力三级反应,其动力学方程为dα/dt=Aexp(-E/RT).0.5(1-α)^3,动力学补偿效应表达式为1nA=0.3027E-1.2979。  相似文献   

7.
制备呋喃甲酸与2,2-联吡啶的锌配合物晶体,利用热分析技术对配合物的热行为进行研究,并利用非等温动力学分析法对配合物的热分解过程进行动力学研究,计算其反应活化能.  相似文献   

8.
研究了苹果酸羟基钛(Ⅲ)、酒石酸羟基钛(Ⅲ)和柠檬酸钛(Ⅲ)在空气、氮气下的热分解反应,从TG曲线求出热分解反应的表观动力学参数反应级数,活化能,频率因子  相似文献   

9.
采用 TG- DTG和 DTA技术研究了 Zn[NFA]2 .5H2 O(NFA=C16H18FN3O3氟哌酸 )在静态空气中的热分解过程及非等温动力学 ,根据 TG曲线确定了热分解过程中的中间产物及最终产物 ,运用 Achar法与 Madhusudanan- Krishnan- Ninan(MKN)法对非等温动力学数据进行分析 ,推断出第二步热分解的动力学方程为 da/dt=Aexp(- E/RT) (1 -α)  相似文献   

10.
本文合成了Ni(Ⅱ)的一个配合物Ni(Nica)2Cl2(Nica表示尼克酰胺)。用元素分析、红外光谱、热重及量热分解对该配合物进行了表征,并对其热分解过程进行了研究,运用Achar法和Coats-Redfern法,推断出该配合物第一步热分解的非等温动力学方程为:dα/dt=Ae^-E/RT3/2(1+α)^2/3[(1+α)^1/3-1]^-1。  相似文献   

11.
报道了用热重法(TG)研究替硝唑(Tinidazole,TNZ)原药及片剂中替硝唑热分解非等温动力学以及药物的稳定性,并对用热重分析仪测定片剂含量的方法进行了探讨.推断出原药热分解过程为零级反应,其动力学方程为dα/dt=Ae-(Ea)/(RT),热分解反应活化能Ea为99.7kJmol-1,指前因子A为3.60×107s-1;片剂中替硝唑的热分解过程为三维扩散级反应,其动力学方程为dα/dt=Ae-(Ea)/(RT)3/2(1+α)2/3/[(1+α)1/3-1],活化能Ea为105.1kJmol-1,指前因子A为1.08×106s-1.实验表明替硝唑原药具有较高的热解活化能,热稳定性较好;在片剂中热分解机理和分解活化能发生改变,说明赋形剂对药物的热稳定性有一定影响.根据得到的热分解反应的机理函数和动力学参数,得到片剂有效存贮期与贮存温度的关系曲线,估算出在室温(25℃)下,分解率为10%时药物的存贮期为26.7年,分解率为5%时所需要的时间约为6.9年.  相似文献   

12.
通过冷却结晶实验制备醋酸乌利司他以乙醇为溶剂的假多晶型晶体.热重实验结果表明醋酸乌利司他假多晶型在升温过程中包含溶剂脱除与分子热分解2个过程.利用非等温热重法对醋酸乌利司他假多晶型的分子热分解过程机理及其动力学进行研究.基于不同热分解机理所对应的反应动力学机理函数,结合醋酸乌利司他假多晶型非等温热分解实验数据,计算估测醋酸乌利司他假多晶型分子热分解的机理,并计算得到这一过程所对应的热分解动力学方程.  相似文献   

13.
目的研究了阿斯匹林的热稳定性及热解动力学.方法采用TG热重仪测定药物的热解曲线,用多条升温速率法Freeman-Carrollde 法和 Ozawa 法处理热重数据并比较热解活化能和热解温度.结果计算出阿斯匹林的热解动力学参数活化能、指前因子、反应级数;热解动力学方程为dα/dt=1.15×108e-96.04/RT (1-α)1.91.结论阿斯匹林片剂的热稳定性大于原药.由于阿斯匹林对温度敏感,应低温储存.阿斯匹林在室温下分解10 %约需2.08 a.  相似文献   

14.
采用热重-微分热重(TG-DTG)技术,研究过氧化二异丙苯在动态空气气氛中的热分解过程.运用Starink法,Madhusudanan-Krishnan-Ninan(MKN)法和Achar-Brindley-Sharp-Wendworth(ABSW)法分析非等温动力学数据,推断出过氧化二异丙苯热分解动力学模式为收缩球状R3模型,得到其反应的动力学方程为dα/dt=Aexp(-E/RT)×3(1-α)2/3,热分解反应的活化能E为117.32 kJ.mol-1,活化自由能ΔG≠为123.12 kJ.mol-1,活化焓ΔH≠为113.69 kJ.mol-1,活化熵ΔS≠为-21.41 J.(mol.K)-1.  相似文献   

15.
采用TG-DTG技术研究了安乃近在静态空气气氛中的非等温热分解过程及其动力学,根据TG曲线并结合红外光谱技术确定了热分解过程中的中间产物及最终产物,运用微分法和积分法对热分析数据进行了分析,推断出第1步反应为脱水反应,其动力学方程为dα/dt=Ae-(E)/(RT)(1-α);第2步反应为二级反应,其动力学方程为dα/dt=Ae-(E)/(RT)(1-α)2.  相似文献   

16.
通过热重分析,考察并比较了国产含杂环的芳香族聚酰胺纤维F-12纤维和芳纶Ⅲ的热分解过程及动力学.在不同升温速率(5,10,15,20℃/min)下,获得热重和微分热重曲线,并采用Kissinger,Friedman,Flynn-Wall-Ozawa 3种热分析方法,对F-12纤维和芳纶Ⅲ的热分解动力学行为进行了对比研究,得到了两者的热分解反应动力学方程.研究结果表明,F-12纤维的热稳定性稍优于芳纶Ⅲ.  相似文献   

17.
采用TG-DTG技术研究了稀土铕(Eu3+)与对硝基苯甲酸(P-NBA)及2,2'-联吡啶(dipy)配合物在静态空气中的热分解过程,运用Achar法和oats-Redfern法,推断出该配合物第2~4步热分解的非等温动力学方程,同时给出了相应的动力学补偿效应的表达式.  相似文献   

18.
三氯化缬氨酸六水合铒配合物的热分解反应动力学   总被引:1,自引:1,他引:0  
对三氯化缬氨酸六水合铒配合物进行了合成和EDTA滴定、元素分析、红外光谱分析、熔点测定,利用热重、差热分析等方法推测了配合物的热分解机理.配合物的热分解过程分为热分解失水、氨基酸骨架断裂,最终配合物为稀土碱式盐.对配合物第1、第2步热分解反应进行了非等温动力学研究,两步反应的活化能分别为123.42和222.83 kJ·mol-1,指前因子的对数值分别为36.31和41.00,复杂的反应动力学方程同时被确定.  相似文献   

19.
Cu(II)草酰胺衍生物热分解动力学研究   总被引:1,自引:0,他引:1  
利用TG DTG DTA热分析技术 ,研究了N ,N’ 双 (氨烷基 )草酰胺合铜 (II)配合物在动态空气气氛中的热稳定性 ;结合微分法 (Achar法 )和积分法 (Coats Redfen法 )协同处理非等温TG数据 ,通过对比热分解动力学参数E和lnA ,提出了配合物热分解反应机理 ;并由动力学补偿效应获得了E与lnA的数学表达式  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号