首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 55 毫秒
1.
利用非线性流形学习的轴承早期故障特征提取方法   总被引:8,自引:0,他引:8  
针对早期故障微弱特征难以提取的问题,提出了一种基于非线性流形学习的滚动轴承早期故障特征提取方法.在由时域指标和小波频带能量组成的原始特征空间中,结合局部切空间排列学习算法的特点,采用散布矩阵分类测度指标,实现了局部邻域的优化选取,从而提取出最优的敏感故障特征.通过实例应用,表明该方法有效地克服了主分量分析和非线性核主分量分析方法的不足,提取的融合特征敏感性更好,从而提高了故障模式的分类性能,实现了轴承的早期故障诊断.  相似文献   

2.
本文讨论紧致黎曼流形中的Torse-forming向量场,得到此向量场同流形的Ricci曲率之间的关系,运用Torse-forming向量场的性质给出了容有这种向量场的紧致无边流形同球面共形的一个条件,并讨论了Torse-forming向量场诱导到一般子流形的情况。  相似文献   

3.
完备黎曼流形的几何性质   总被引:1,自引:0,他引:1  
利用Jacobi场,Rauch比较定理,核心等概念和定理讨论了完备黎曼流形的若干几何性质。  相似文献   

4.
故障样本具有复杂多样性,而不同故障类型存在于不同维数的多流形子空间中,将样本统一降维到同一维数的单流形上则不能进行高效的特征提取.提出了一种基于局部线性嵌入(Local Linear Embedding,LLE)的多流形学习(Multi-LLE)故障诊断方法,将单流形故障诊断方法扩展到多流形,首先利用Multi-LLE分别提取各故障数据集在其本征维数流形上的特征,再通过各特征向量的聚类中心与故障新样本在不同维数下的嵌入向量的距离比较,将距离最近者归为一类实现分类识别.利用转子实验故障数据对算法进行了验证,并将Multi-LLE方法与LLE和海赛局部线性嵌入(HLLE)方法进行了比较,结果表明该方法能够有效的实现故障诊断.  相似文献   

5.
6.
获得如下定理:假设M^n是n+1的维黎曼流形N^n+1的n维超曲面,那么M^n是极小的当且仅当等式:nH∑λI+-N|h|∑|λi|=-n|H|(nS)^1/2成立。  相似文献   

7.
研究了伪黎曼流形中极大类空子流形,得到了这类子流形关于黎曼曲率张量的不等式.此外,在Ricci曲率平行的条件下,得到了Lorentz空间中极大类空子流形关于数量曲率的不等式.  相似文献   

8.
在[1]中给出了黎曼流形中平行曲率超曲面的条件和某些性质,本文引入法联络,将[1]的结果可直接推广到黎曼流形的子流形上去。  相似文献   

9.
针对样本数少时不能用样本协方差代替统计协方差的问题,提出了一种基于黎曼流形的单基地MIMO ( Multiple-Input Multiple-Output) 雷达目标检测新方法。该方法利用拓普利兹-厄米特正定( THPD: Toeplitz- Hermitian Positive Definite) 矩阵会在信号空间形成黎曼流形的特点,通过burg 递推法分别生成单快拍下接收信 号和噪声的THPD 协方差矩阵,并计算噪声THPD 协方差矩阵的黎曼均值,将其与接收信号THPD 协方差矩阵 之间的黎曼距离作为检测统计量。该方法可增加黎曼流形上接收信号与噪声间的差异性。仿真结果表明, 与传统的基于欧几里得距离的检测方法相比,显著提高了低信噪比和单快拍下的目标检测性能。  相似文献   

10.
具非负曲率的黎曼流形   总被引:7,自引:3,他引:7  
利用沿测地线的Jacobi场和指标形式,证明了具非负曲率的完备2维黎曼流形M^2如果没有共轭点,必等距于R^2。  相似文献   

11.
目的 在实际应用中采集的原始多模态故障数据通常是包含大量噪声和冗余信息的非线性数据,如何从不同故障模态中提取有效的非线性故障特征仍是一个挑战性的问题。方法 提出了一种鉴别流形敏感的跨模态故障诊断方法,在该方法中首先借助相关分析理论在跨模态故障空间中构建了不同模态间的相关系数,并通过理论推导获得了相关系数的等价优化模型,然后利用局部近邻图构建了鉴别流形敏感散布,进而通过最大化不同模态间的相关性和最小化鉴别流形敏感散布,形成了鉴别流形敏感的跨模态故障诊断模型,并且在理论上推导出了该优化模型的解析解,从而能够从不同模态的故障数据中学习强鉴别力的非线性故障特征。结果 在德国帕德博恩轴承数据集和多模态轴承故障数据集上设计了针对性实验,实验结果显示在少量故障样本用于训练时即可获得良好的诊断准确性。结论 提出的方法是一种有效的跨模态故障诊断方法。  相似文献   

12.
针对传统故障诊断模型面向海量故障数据时诊断准确度低的问题,首先,提出了一种局部均值分解与固定点算法联合降噪方法,以消除轴承振动信号中的噪声;其次,为了避免原始信号中敏感特征难以提取的问题,提出了一种基于核主成分分析的降维方法;再次,构建了一种基于改进极端梯度提升决策树的故障诊断模型,采用GS-PSO算法优化SVM性能,进而运用改进极端梯度提升决策树思想修正分类模型的残差以提升模型分类精度,应用Spark-大数据平台,通过并行处理技术进行科学计算;最后,采用CWRU提供的滚动轴承数据进行训练与仿真,证明构建的模型能实现对不同类型滚动轴承的识别诊断,并保证诊断结果的准确率。通过对4种不同故障诊断模型的对比分析,表明本文模型具有可行性和优越性。  相似文献   

13.
为揭示滚动轴承故障振动信号的典型特征规律,结合变分模态分解(VMD)与深度置信网络(DBN)的优势,提出轴承振动信号特征的提取方法.将信号先进行基于VMD的分解,根据各模态分量频谱图确定其模态参数,得到若干个模态分量.然后,基于DBN强大的特征提取能力,采用DBN无监督特征提取方法,将得到的模态分量映射到一维,并融合各分量的DBN特征形成特征向量,将其作为粒子群优化支持向量机(PSO-SVM)的输入进行故障诊断.实验验证与对比分析证明了VMD-DBN方法的可行性与优越性.  相似文献   

14.
针对传统滚动轴承故障诊断中复杂的特征提取问题,利用深层残差网络能够增强诊断模型非线性表征能力的特点,通过引入通道注意力与空间注意力机制,提出一种基于多注意力机制端到端的滚动轴承智能故障诊断方法。首先,通过原始振动加速度信号经过积分运算得到速度和位移;然后,将3者组合成具有特征增强的图像,输入至结合了多注意力机制的深层残差网络实现特征提取;最后,利用多分类函数完成滚动轴承故障分类。在本地实验室轴承数据集上进行了验证,结果表明,所提方法的诊断准确率达到了97.50%。验证了基于多注意力机制端到端的滚动轴承智能故障诊断方法的可行性和有效性,可为滚动轴承的精确故障诊断提供支持。  相似文献   

15.
16.
提出一种基于改进GAN(生成对抗网络)的滚动轴承故障诊断方法,以振动信号作为主要依据,结合连续小波变换处理非平稳信号的能力和半监督生成对抗网络(semi-supervised generation adversarial networks,SSGAN)处理和识别图像的功能,在半监督生成对抗网络的基础上引入条件模型并对损失函数进行优化,指导生成器和判别器的训练.首次将改进GAN算法应用于故障诊断领域并利用其生成模型和半监督学习能力分别解决了样本数据不足和样本标记问题.实验表明,连续小波变换与改进GAN 结合的故障诊断方法与其他主流诊断方法相比能达到较高准确率.  相似文献   

17.
对滚动轴承进行故障诊断能够及时发现故障信息,减小事故发生几率,延长机器寿命,具有较高的现实意义。本文介绍了滚动轴承故障诊断方法,重点综述了振动分析法的发展现状与趋势,并指出了目前滚动轴承故障诊断所存在的主要问题。  相似文献   

18.
何鹏 《科学技术与工程》2024,24(14):5804-5811
基于数据驱动的轴承故障诊断方法已成为轴承故障诊断领域研究的重点,但由于水力测功器轴承故障情况极少,导致基于数据驱动的轴承故障诊断准确率低。针对上述问题,本文提出了一种基于改进生成对抗神经网络(Generative Adversarial Networks)的水力测功器轴承故障在线诊断方法,首先对生GAN训练方法进行改进,用改进的GAN交替训练判别器和生成器学习原始数据的分布特性,建立了水力测功器轴承故障数据增强模型得到合成数据。然后结合原始数据和合成数据训练得到基于SVM的轴承故障诊断模型。最后采用该轴承故障诊断模型实现水力测功器轴承故障在线诊断。仿真结果表明,所提出的故障在线诊断方法通过改进GAN增强训练极大提升了轴承故障诊断的实时准确率,并具有抗噪声干扰性强的特点。  相似文献   

19.
为快速准确识别轴承的运行状态,提出了一种基于多维缩放和随机森林的轴承故障诊断方法。该方法采用函数型数据分析,得到轴承振动信号自相关函数的拟合系数,构造故障特征集;使用网格搜索法优化随机森林参数,得到特征重要性排序;然后使用多维缩放方法对特征选择后的故障特征集进行降维;最后采用随机森林对降维后的故障特征进行诊断识别。为验证所提方法的有效性,开展了正常、内圈故障、外圈故障、滚子故障状态下的轴承振动实验,结果表明,函数型数据分析的特征提取方式能有效表征不同状态轴承振动信号的不同特征,与t分布随机邻域嵌入和主分量分析方法相比,多维缩放方法具有更高的类间距和类内距的比值,且优势明显,各类状态的诊断准确率均高达100%,较使用原始特征集的随机森林平均准确率提高了5%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号