首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Organic light-emitting diodes based on naphthylimine-gallium complexes doped into a PPV derivative have been fabricated by a spin coating method. Color variation from green to blue with increase of the applied voltage has been observed. And the electroluminescent intensity of the blend samples is much stronger than that of the samples containing the complexes only. The results have been attributed to the variation of the recombination zone and the charge transfer between the materials. The process of the charge transport has been analyzed in detail.  相似文献   

2.
Oxalic-acid-based co-precipitation method was employed to prepare LiNi2/3Mn1/3O2 sample with a high-ordered structure. Li+, Ni2+ and Mn2+ acetates were used as starting materials. The influence of the amount of lithium source in the starting materials on Li+ content, disorder of Li+-Ni2+ ions, and electrochemical performance has been investigated. Rietveld refinement shows that the sample prepared with 20% excess Li-source in the starting materials exhibits a perfect ordered structure. A specific discharge capacity is as high as 172 mAh/g at C/20 in the voltage range of 4.35–2.7 V. However, the cyclability is not satisfactory: about 25.3% fade in capacity was observed over 50 cycles. Chemically stable SiO2 was coated on the surface of LiNi2/3Mn1/3O2 particles. A significant improvement in cyclability was attained with 3 wt% SiO2 coating, which is ascribable to the protection of LiNi2/3Mn1/3O2 particles from being dissolved into the electrolyte.  相似文献   

3.
Lining materials are widely used in buildings to cover walls and ceilings. Combustible linings may produce a potential high fire hazard in buildings. Once ignited, it propagates fire and accelerates the enclosure fire growth. Two types of lining materials were studied during the tests: block board and plywood. The test was conducted in an ISO 9705 room, where linings were mounted on walls without the ceiling. By changing the heat output of the burner, the ventilation, etc., the concentrations of CO2/CO of different lining materials were researched. The effect of test conditions on the production of CO2/CO of different lining materials was investigated, and useful experimental data were provided for the further development of numerical modeling to simulate enclosure fire growth lined with combustible materials.  相似文献   

4.
The pore structure of Cr2O3/Al2O3 catalysts and the surface chemical properties of these pores were characterized by positron lifetime and coincidence Doppler broadening (CDB) measurements. Four lifetime components could be resolved from the positron lifetime spectrum, with two long lifetime components and two short lifetime components. The two long lifetimes τ4 and τ3 are attributed to ortho-positronium (o-Ps) annihilation in large pores and microvoids, respectively. With increasing Cr2O3 content, both τ4 and its intensity I4 show sharp decrease, while τ3 and its intensity I3 keep nearly unchanged. The Doppler broadening S parameters also show sharp decrease with increasing Cr2O3 content. Detailed analysis of the CDB spectrum reveals that the parapositronium (p-Ps) intensity also decreases with increasing Cr2O3 content. This indicates that the change of o-Ps lifetime τ4 is due to the chemical quenching by Cr2O3 but not spin-conversion of positronium. The decrease of o-Ps intensity I4 indicates that Cr2O3 also inhibits positronium formation.  相似文献   

5.
Highly ordered SnO2/Fe2O3 composite nanowire arrays have been synthesized by electrophoretic deposition method. The morphology and chemical composition of SnO2/Fe2O3 composite nanowire arrays are characterized by SEM, TEM, EDX, XPS, and XRD. The results show that the SnO2/Fe2O3 composite nanowires are about 180 nm in width and tens of microns in length, and they are composed of small nanoparticles of tetraganal SnO2 and rhombohedral α-Fe203 with diameters of 10-15nm. The SnO2/Fe2O3 composite nanowires are formed by a series of chemical reactions.  相似文献   

6.
An experimental study was carried out to assess the effects of silty sand on the CO 2 corrosion behavior of 1 wt% Cr (1Cr) and 3 wt% Cr (3Cr) tubing steel under 0.5 MPa CO 2 at 100°C and 1.5 m/s flow velocity.The 1Cr and 3Cr specimens both suffered general corrosion,but the surface was coarser in the pure CO 2 corrosion environment.Under silty sand conditions,severe pitting corrosion occurred on the 1Cr specimens and some acicular pitting appeared on the 3Cr specimens.The average corrosion rates of 1Cr and 3Cr steels increased by factors of 3 and 1.6,respectively.The corrosion products were analyzed by scanning electron microscopy (SEM),energy dispersive spectroscopy (EDS),X-ray diffraction (XRD),and electrical impedance spectroscopy (EIS).The results show that silty sand acts as an inclusion in corrosion product films and reduces the homogeneity and density of the products,rather than abrading the corrosion film.Ion-diffusion channels may build up around the irregular silty sand;this would degrade the protective capabilities of the product films and aggravate corrosion.  相似文献   

7.
The three composites Y2O3 :Er3+ , Y2O3 :Er3+ /Yb 3+ andY2O3 :Er3+ /TiO2 were prepared using coprecipitation and sol-gel techniques. Their morphology, specific surface area, porosity, UV-vis. absorption spectra and fluorescence spectra were measured using SEM, TEM, surface analysis, UV-vis. absorption and photoluminescence spectrophotometry. SEM and TEM showed that samples prepared using coprecipitation were dispersed, while Y2O3 :Er3+ /TiO2 particles possessed a mesoporous surface and average diameter of ab...  相似文献   

8.
Both single-layer and double-layer organic light-emitting devices based on tris-(8-hydroxylquino- line)-aluminum (AIq3) as emitter are fabricated by thermal vacuum deposition. The electroluminescent characteristica of these devices at various temperatures are measured, and the temperature characteristics of device performance are studied. The effect of temperature on device current conduction regime is analyzed in detail. The results show that the current-voltage (I-V) characteristics of devices are in good agreement with the theoretical prediction of trapped charge limited current (TCLC). In addition, both the charge carrier mobility and charge carrier concentration in the organic layer increase with the rise of temperature, which results in the monotonous increase of AIq3 device current. The current conduction mechanisms of two devices at different temperatures are identical, but the exponent m in current-voltage equation changes randomly with temperature. The device luminance increases slightly and the efficiency decreases monotonously due to the aging of AIq3 luminescent properties caused by high temperature. A tiny blue shift can be observed in the electroluminescent (EL) spectra as the temperature increases, and the reduction of device monochromaticity is caused by the intrinsic characteristics of organic semiconductor energy levels.  相似文献   

9.
Ta-doped In2O3 transparent conductive oxide films were deposited on glass substrates using radio-frequency (RF) sputtering at 300°C. The influence of post-annealing on the structural, morphologic, electrical and optical properties of the films was investigated using X-ray diffraction, field emission scanning electron microscopy, Hall measurements and optical transmission spectroscopy. The obtained films were polycrystalline with a cubic structure and were preferentially oriented in the (222) crystallographic direction. The lowest resistivity, 5.1×10−4 Ω cm, was obtained in the film annealed at 500°C, which is half of that of the un-annealed film (9.9×10−4 Ω cm). The average optical transmittance of the films was over 90%. The optical bandgap was found to decrease with increasing annealing temperature.  相似文献   

10.
The synthesis process of LiCo0.3Ni0.7O2 was investigated by FT-IR, mass spectroscopy, elemental analysis, SEM, BET, TG/DTA and XRD in this paper. The results revealed that lithium and transition metal ions were trapped homogeneously on an atomic scale throughout the precursor. Li2CO3, NiO and CoO are the intermediate products obtained after decomposition of the precursor and Li2CO3 undergoes direct reactions with NiO and CoO to form LiCo0.3Ni0.7O2. Moreover, the kinetics of formation of LiCo0.3Ni0.7O2 by dtrate sol-gel method is faster than the case of the conventional solid-state reaction between lithium carbonate and corresponding reactants. The single phase of LiCo0.3Ni0.7O2 was synthesized at temperature as low as 550℃. The discharge capacity of LiCo0.3Ni0.7O2 increases from 127 to 185 mAh/g as the caldnation temperature increasing from 550 to 750℃. After 100 cycles, the discharge capacity of the sample calcined at 750℃ is 155 mAh/g. The electrochemical study shows that the LiCo0.3Ni0.7O2 has high discharge capacity and good cycling behavior for lithium ion batteries.  相似文献   

11.
The growth and activity of photosynthetic CO2 uptake and extracellular carbonic anhydrase (CAext) of the marine diatom Skeletonema costatum were investigated while cultured at different levels of CO2 in order to see its physio-logical response to different CO2 concentrations under either a low (30 靘ol·m-2·s-1) or high (210 靘ol·m-2·s-1) irradiance. The changes in CO2 concentrations (4—31 靘ol/L) affected the growth and net photosynthesis to a greater extent under the low than under the high light re-gime. CAext was detected in the cells grown at 4 mol/L CO2 but not at 31 and 12 靘ol/L CO2, with its activity being about 2.5-fold higher at the high than at the low irradiance. Photo- synthetic CO2 affinity (1/ K1/2(CO2)) of the cells de-creased with increased CO2 concentrations in culture. The cells cultured under the high-light show significantly higher photosynthetic CO2 affinity than those grown at the low-light level. It is concluded that the regulations of CAext activity and photosynthetic CO2 affinity are dependent not only on CO2 concentration but also on light availability, and that the de-velopment of higher CAext activity and CO2 affinity under higher light level could sufficiently support the photosyn-thetic demand for CO2 even at low level of CO2.  相似文献   

12.
A coordination complex was synthesized from NiCl2 and dipeptide glycylglycine(GG). It was characterized by element analysis, NMR and TG methods, and then was determined to be Ni(C4HsN2O3)2Cl2. Using an isoperibolic reaction calorimeter, the standard molar enthalpy of formation of Ni(GG)2Cl2(solid) has been determined to be -(1 674.66±2.02) kJ · mol^-1 at 298.15 K.  相似文献   

13.
有机太阳能电池的异质结界面是影响其性能的一个重要因素.以氧化锌/碳酸铯作为双电子传输层,改善电子传输层与活性层的界面接触并提高电子传输能力.利用溶胶-凝胶法制备OSCs器件,通过优化的双电子传输层,使基于PTB7-Th:PC71BM的OSCs器件的最高效率达到了8.08%,其相较于ZnO电子传输层器件提高了10.68%.实验表明,由于ZnO/Cs2CO3 ETLs具有最佳的表面形貌和光吸收,其填充因子、短路电流密度和电子迁移率都显著提升.这种ZnO/Cs2CO3双电子传输层为OSCs性能改善提供了新的思路.  相似文献   

14.
Using the eddy covariance method, from 1 July 2003 to 30 June 2004, we conducted the observation and analysis of ecosystem CO2 flux in 3 types of alpine meadow vegetation (Kobresia humilis, Potentilla fruticosa shrub and Kobresia tibetica swamp meadows) on the Qinghai-Tibetan Plateau. The results show that the Kobresia humilis meadow, the shrub meadow and the swamp meadow's highest CO2 uptake rates are 16.78, 10.42 and 16.57 μmol·m^-2·-s^-1 respectively, while their highest CO2 release rates are 8.22, 7.73 and 18.67μmol·m^-2·-s^-1 respectively. The Kobresia humilis meadow and shrub meadow's annual atmospheric uptakes are 282 g CO2/m^2 and 53 g CO2/m^2, respectively, while swamp meadow's annual atmospheric release is 478 g CO2/m^2. This proves that the Kobresia humilis meadow and the shrub meadow on the Qinghai-Tibetan Plateau have relatively low potential for CO2 uptake and release compared to C4 grasslands, a number of lowland grasslands, and forests. Moreover, swamp meadow has relatively high release potential. This, in turn, reveals clear differences in carbon source/sink between different types of vegetation in the Qinghai-Tibetan Plateau alpine meadow ecosystem. These differences are mainly brought by differences in the vegetations' photosynthetic capacity and soil respiration.  相似文献   

15.
The third-order optical nonlinearities, including third-order nonlinear susceptibility X^(3), nonlinear refractive index (n2) and temporal response, were measured with forward DFWM using Nd:YAG mode-locked pulse laser. The results show that Eu203 doped 5ZnO-20Nb2O5-75TeO2 glasses have large n2 and ultra-fast temporal response. Raman spectra show that Eu2O3 dopant induces the changes in the local structure of glasses. The higher the dopant concentration, the larger the nonlinear refractive n2 and the faster the temporal response. The enhancement on the third-order optical nonlinearities can be attributed to the deformation of the electronic clouds in [TeO4] enhanced by Eu2O3 dopant.  相似文献   

16.
CuO-Fe2O3 composite material with strong magnetism and a large surface area is prepared by the co-precipitate method. Its adsorption properties towards Acid Red B (ARB) and the regeneration by catalytic combastion of organic compounds have been studied. The results show that the prepared CuO-Fe2O3 composite is an excellent adsorbent for ARB adsorption at acid condition. The presence of Cl^- has no effect on ARB adsorption. But the SO4^2- can inhibit ARB adsorption. After being recovered by the magnetic separation method, the adsorbent can be regenerated by catalytic oxidation of absorbate at 300℃ in air atmosphere. The combustion reactions of ARB in the presence or absence of CuO-Fe2O3 are studied by in situ diffuse refieclion FTIR. The results indicate that, in the presence of CuO-Fe2O3, the degradation temperature is significantly lowered by the catalysis of CuO-Fe2O3, and ARB can be oxidized completely without volatile organic compound by-product; in comparison, in the absence of CuO-Fe2O3, the temperature needed for oxidation of ARB is higher and the reaction is incomplete with some N-containing harmful compounds produced. The reusability of CuO-Fe2O3 is also studied in successive seven adsorption-regeneration cycles.  相似文献   

17.
The response of ENSO frequency to the increasing CO2 concentration and associated mechanism are examined with outputs of four coupled climate models (GFDL/CM2.0,CNRM/CM3,IPSL/CM4 and INM/CM3.0) submitted to the IPCC Fourth Assessment Report (IPCC AR4).Results reveal a significant change of ENSO frequency as response to the increasing CO2 concentration.However,such a change exhibits an evident model dependence.The ENSO frequency tends to increase in GFDL/CM2.0 and CNRM/CM3 models and decreases in IPSL/CM4 an...  相似文献   

18.
The superconductive Josephson junction is the key device for superconducting quantum computation. We have fabricated Al/Al2O3/Al tunnel junctions using a double angle evaporation method based on a suspended shadow mask. The Al2O3 junction barrier has been formed by introducing pure oxygen into the chamber during the fabrication process. We have adjusted exposure conditions by changing either the oxygen pressure or the oxidizing time during the formation of tunnel barriers to control the critical current density Jc and the junction specific resistance Rc. Measurements of the leakage in Al/Al2O3/Al tunnel junctions show that the devices are suitable for qubit applications.  相似文献   

19.
A TiO2@SiO2 hybrid support was prepared by the sol-precipitation method using n-octylamine as a template.The photocatalyst manganese phthalocyanine tetrasulfonic acid (MnPcS) was immobilized on the support to form MnPcS-TiO2@SiO2.X-ray diffraction (XRD) and UV-Visible diffuse reflectance spectra (UV-Vis DRS) were employed to characterize the catalyst.The photocatalytic degradation of rhodamine B (RhB) and the catalytic oxidation of o-phenylenediamine (OPDA) under visible light irradiation were used as probe reactions.The mineralization efficiency and the degradation mechanism were evaluated using chemical oxygen demand (COD Cr) assays and electron spin resonance (ESR),respectively.RhB was efficiently degraded by immobilized MnPcS-TiO2@SiO2 under visible light irradiation.Complete decolorization of RhB occurred after 240 min of irradiation and 64.02% COD Cr removal occurred after 24 h of irradiation.ESR results indicated that the oxidation process was dominated by the hydroxyl radical (·OH) and superoxide radical (O-·2) generated in the system.  相似文献   

20.
The Er3 doped Al2O3 powders were prepared by the sol-gel method using the aluminium isopropoxide [Al(OC3H7)3]-derived Al2O3 sols with addition of the erbium nitrate [Er(NO3)3.5H2O]. The different phase structure, including three crystalline types of (Al,Er)2O3 phases, γ, θ, α, and two Er-Al-O phases, ErAlO3 and Al10Er6O24, was obtained with the 1 mol% Er3 doped Al2O3 powders at the different sintering temperatures of 600―1200℃. The green and red up-conversion emissions centered at about 523, 545 and 660 nm, corresponding respectively to the 2H11/2, 4S3/2→4I15/2 and 4F9/2→4I15/2 transitions of Er3 , were detected by a 978 nm semiconductor laser diodes excitation. The phase structure and OH content had evident influence on the up-conversion emissions intensity. The maximum intensities of both the green and red emissions were obtained respectively for the Er3 doped Al2O3 powders sintered at 1200 ℃, which was composed mainly of α-(Al,Er)2O3, less of ErAlO3 and Al10Er6O24 phases, and with the least OH content. The two-photon absorption up-conversion process was involved in the green and red up-conversion emissions of the Er3 doped Al2O3 powders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号