首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large conductance, Ca2+-activated potassium (BK) channels are widely expressed throughout the animal kingdom and play important roles in many physiological processes, such as muscle contraction, neural transmission and hearing. These physiological roles derive from the ability of BK channels to be synergistically activated by membrane voltage, intracellular Ca2+ and other ligands. Similar to voltage-gated K+ channels, BK channels possess a pore-gate domain (S5–S6 transmembrane segments) and a voltage-sensor domain (S1–S4). In addition, BK channels contain a large cytoplasmic C-terminal domain that serves as the primary ligand sensor. The voltage sensor and the ligand sensor allosterically control K+ flux through the pore-gate domain in response to various stimuli, thereby linking cellular metabolism and membrane excitability. This review summarizes the current understanding of these structural domains and their mutual interactions in voltage-, Ca2+ - and Mg2+ -dependent activation of the channel. Received 25 September 2008; received after revision 23 October 2008; accepted 24 October 2008  相似文献   

2.
Advances in mass spectrometry and peptide biochemistry coupled to modern methods in electrophysiology have permitted the isolation and identification of numerous novel peptide toxins from animal venoms in recent years. These advances have also opened up the field of spider venom research, previously unexplored due to methodological limitations. Many peptide toxins from spider venoms share structural features, amino acid composition and consensus sequences that allow them to interact with related classes of cellular receptors. They have become increasingly useful agents for the study of voltage-sensitive and ligand-gated ion channels and the discrimination of their cellular subtypes. Spider peptide toxins have also been recognized as useful agents for their antimicrobial properties and the study of pore formation in cell membranes. Spider peptide toxins with nanomolar affinities for their receptors are thus promising pharmacological tools for understanding the physiological role of ion channels and as leads for the development of novel therapeutic agents and strategies for ion channel-related diseases. Their high insecticidal potency can also make them useful probes for the discovery of novel insecticide targets in the insect nervous system or for the development of genetically engineered microbial pesticides.Received 19 March 2003; received after revision 9 May 2003; accepted 16 May 2003  相似文献   

3.
Glycolysis is an evolutionary conserved metabolic pathway that provides small amounts of energy in the form of ATP when compared to other pathways such as oxidative phosphorylation or fatty acid oxidation. The ATP levels inside metabolically active cells are not constant and the local ATP level will depend on the site of production as well as the respective rates of ATP production, diffusion and consumption. Membrane ion transporters (pumps, exchangers and channels) are located at sites distal to the major sources of ATP formation (the mitochondria). We review evidence that the glycolytic complex is associated with membranes; both at the plasmalemma and with membranes of the endo/sarcoplasmic reticular network. We examine the evidence for the concept that many of the ion transporters are regulated preferentially by the glycolytic process. These include the Na+/K+-ATPase, the H+-ATPase, various types of Ca2+-ATPases, the Na+/H+ exchanger, the ATP-sensitive K+ channel, cation channels, Na+ channels, Ca2+ channels and other channels involved in intracellular Ca2+ homeostasis. Regulation of these pumps, exchangers and ion channels by the glycolytic process has important consequences in a variety of physiological and pathophysiological processes, and a better understanding of this mode of regulation may have important consequences for developing future strategies in combating disease and developing novel therapeutic approaches. Received 20 July 2007; received after revision 30 July 2007; accepted 17 August 2007  相似文献   

4.
Conotoxins of the O-superfamily affecting voltage-gated sodium channels   总被引:1,自引:1,他引:0  
The venoms of predatory cone snails harbor a rich repertoire of peptide toxins that are valuable research tools, but recently have also proven to be useful drugs. Among the conotoxins with several disulfide bridges, the O-superfamily toxins are characterized by a conserved cysteine knot pattern: C-C-CC-C-C. While ω-conotoxins and κ-conotoxins block Ca2+ and K+ channels, respectively, the closely related δ- and μO-conotoxins affect voltage-gated Na+ channels (Nav channels). δ-conotoxins mainly remove the fast inactivation of Nav channels and, thus, functionally resemble long-chain scorpion α-toxins. μO-conotoxins are functionally similar to μ-conotoxins, since they inhibit the ion flow through Nav channels. Recent results from functional and structural assays have gained insight into the underlying molecular mechanisms. Both types of toxins are voltage-sensor toxins interfering with the voltage-sensor elements of Nav channels. Received 27 December 2006; received after revision 30 January 2007; accepted 19 February 2007  相似文献   

5.
Single-channel recordings of dozens of cell types, including invertebrate (molluscan) and vertebrate heart cells, reveal stretch-sensitive ion channels. The physiological roles of these channels are undoubtedly diverse but it is usually assumed that the roles they play are related to the channels' mechanosensitive gating. Whether this assumption is valid remains to be seen. Attempts to connect the single-channel observations with the mechanical aspects of physiological or developmental processes are discussed. In the case of molluscan cells, recent work suggests that their stretch channels have physiological functions unrelated to mechanosensitive gating.  相似文献   

6.
Ion channels in plant signaling   总被引:5,自引:0,他引:5  
Plant ion channel activities are rapidly modulated in response to several environmental and endogenous stimuli such as light, pathogen attack and phytohormones. Electrophysiological as well as pharmacological studies provide strong evidence that ion channels are essential for the induction of specific cellular responses, implicating their tight linkage to signal transduction cascades. Ion channels propagate signals by modulating the membrane potential or by directly affecting cellular ion composition. In addition, they may also be effectors at the end of signaling cascades, as examplified by ion channels which determine the solute content of stomatal guard cells. Plant channels are themselves subject to regulation by a variety of cellular factors, including calcium, pH and cyclic nucleotides. In addition, they appear to be regulated by (de)-phosphorylation events as well as by direct interactions with cytoskeletal and other cellular proteins. This review summarizes current knowledge on the role of ion chan nels in plant signaling.  相似文献   

7.
Transmembrane ion channels play a crucial role in the existence of all living organisms. They partition the exterior from the interior of the cell, maintain the proper ionic gradient across the cell membrane and facilitate signaling between cells. To perform these functions, ion channels must be highly selective, allowing some types of ions to pass while blocking the passage of others. Here we review a number of studies that have helped to elucidate the mechanisms by which ion channels discriminate between ions of differing charge, focusing on four channel families as examples: gramicidin, ClC chloride, voltage-gated calcium and potassium channels. The recent availability of high-resolution structural data has meant that the specific inter-atomic interactions responsible for valence selectivity can be pinpointed. Not surprisingly, electrostatic considerations have been shown to play an important role in ion specificity, although many details of the origins of this discrimination remain to be determined. Received 4 September 2005; received after revision 17 October 2005; accepted 2 November 2005  相似文献   

8.
ATP-dependent potassium (KATP) channels occupy a key position in the control of insulin release from the pancreatic β cell since they couple cell polarity to metabolism. These channels close when more ATP is produced via glucose metabolism. They are also controlled by sulfonylureas, a class of drugs used in type 2 diabetic patients for triggering insulin secretion from β cells that have lost part of their sensitivity to glucose. We have demonstrated the existence of endogenous counterparts to sulfonylureas which we have called ‘endosulfines.’ In this review, we describe the discovery, isolation, cloning, and biological features of the high-molecular-mass form, α-endosulfine, and discuss its possible role in the physiology of the β cell as well as in pathology. Received 1 February 1999; received after revision 26 March 1999; accepted 26 March 1999  相似文献   

9.
Small conductance calcium-activated potassium (SK or KCa2) channels link intracellular calcium transients to membrane potential changes. SK channel subtypes present different pharmacology and distribution in the nervous system. The selective blocker apamin, SK enhancers and mice lacking specific SK channel subunits have revealed multifaceted functions of these channels in neurons, glia and cerebral blood vessels. SK channels regulate neuronal firing by contributing to the afterhyperpolarization following action potentials and mediating IAHP, and partake in a calcium-mediated feedback loop with NMDA receptors, controlling the threshold for induction of hippocampal long-term potentiation. The function of distinct SK channel subtypes in different neurons often results from their specific coupling to different calcium sources. The prominent role of SK channels in the modulation of excitability and synaptic function of limbic, dopaminergic and cerebellar neurons hints at their possible involvement in neuronal dysfunction, either as part of the causal mechanism or as potential therapeutic targets. Received 23 April 2008; received after revision 29 May 2008; accepted 4 June 2008  相似文献   

10.
Conclusions The total proton load found in these ecosystems exceeds by far the known rates of buffering in soils by silicate weathering and release of basic cations (see above).Under the present proton load most forest soils will therefore acidify and besides losses of nutrients the occurrence of possible toxic ions in the soil unavoidable (Al-buffer range)20, 21.The proportion of the total proton load of the soil that is represented by the internal production emphasizes the importance of acid deposition as main cause of soil acidification and destabilization of forest ecosystems under Central European conditions.  相似文献   

11.
A dynamic view of peptides and proteins in membranes   总被引:1,自引:0,他引:1  
Biological membranes are highly dynamic supramolecular arrangements of lipids and proteins, which fulfill key cellular functions. Relatively few high-resolution membrane protein structures are known to date, although during recent years the structural databases have expanded at an accelerated pace. In some instances the structures of reaction intermediates provide a stroboscopic view on the conformational changes involved in protein function. Other biophysical approaches add dynamic aspects and allow one to investigate the interactions with the lipid bilayers. Membrane-active peptides fulfill many important functions in nature as they act as antimicrobials, channels, transporters or hormones, and their studies have much increased our understanding of polypeptide-membrane interactions. Interestingly several proteins have been identified that interact with the membrane as loose arrays of domains. Such conformations easily escape classical high-resolution structural analysis and the lessons learned from peptides may therefore be instructive for our understanding of the functioning of such membrane proteins. Received 11 March 2008; received after revision 2 May 2008; accepted 5 May 2008  相似文献   

12.
13.
Among the scorpion venom components whose function are poorly known or even show contrasting pharmacological results are those called “orphan peptides”. The most widely distributed are named β-KTx or scorpine-like peptides. They contain three disulfide bridges with two recognizable domains: a freely moving N-terminal amino acid sequence and a tightly folded C-terminal region with a cysteine-stabilized α/β (CS-αβ) motif. Four such peptides and three cloned genes are reported here. They were assayed for their cytolytic, antimicrobial and K + channel-blocking activities. Two main characteristics were found: the existence of an unusual structural and functional diversity, whereby the full-length peptide can lyse cells or kill microorganisms, and a C-terminal domain containing the CS-αβ motif that can block K + channels. Furthermore, sequence analyses and phylogenetic reconstructions are used to discuss the evolution of this type of peptide and to highlight the versatility of the CS-αβ structures. Received 13 August 2007; received after revision 30 October 2007; accepted 2 November 2007  相似文献   

14.
Inhibition of gastric acid secretion is the mainstay of the treatment of gastroesophageal reflux disease and peptic ulceration; therapies to inhibit acid are among the best-selling drugs worldwide. Highly effective agents targeting the histamine H2 receptor were first identified in the 1970s. These were followed by the development of irreversible inhibitors of the parietal cell hydrogen-potassium ATPase (the proton pump inhibitors) that inhibit acid secretion much more effectively. Reviewed here are the chemistry, biological targets and pharmacology of these drugs, with reference to their current and evolving clinical utilities. Future directions in the development of acid inhibitory drugs include modifications of current agents and the emergence of a novel class of agents, the acid pump antagonists. Received 30 May 2007; received after revision 15 August 2007; accepted 13 September 2007  相似文献   

15.
利用室内变坡水槽,模拟了复式河道滩地3种植物对漫滩水流的干扰作用,并借助声学多普勒测速仪(ADV)施测了不同垂线、不同测点的瞬时流速,计算了不同条件下的河道糙率。基于水动力及植物柔性变形分析,建立了淹没状态下的植物河道糙率计算的基本关系,反映出糙率值不仅与水流动力条件有关,还与植物类型、淹没高度、布置及其自身力学性能有关,同时,利用试验资料及理论分析成果,进一步获取了植物河道的附加糙率值,借此分析与评价河道植物对水流阻力的影响程度。  相似文献   

16.
The transmembrane electrochemical proton gradient generated by the redox systems of the respiratory chain in mitochondria and aerobic bacteria is utilized by proton translocating ATP synthases to catalyze the synthesis of ATP from ADP and Pi. The bacterial and mitochondrial H+-ATP synthases both consist of a membranous sector, F0, which forms a H+-channel, and an extramembranous sector, F1, which is responsible for catalysis. When detached from the membrane, the purified F1 sector functions mainly as an ATPase. In chloroplasts, the synthesis of ATP is also driven by a proton motive force, and the enzyme complex responsible for this synthesis is similar to the mitochondrial and bacterial ATP synthases. The synthesis of ATP by H+-ATP synthases proceeds without the formation of a phosphorylated enzyme intermediate, and involves co-operative interactions between the catalytic subunits.  相似文献   

17.
HCN channels: Structure, cellular regulation and physiological function   总被引:2,自引:1,他引:1  
Hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels belong to the superfamily of voltage-gated pore loop channels. HCN channels are unique among vertebrate voltage-gated ion channels, in that they have a reverse voltage-dependence that leads to activation upon hyperpolarization. In addition, voltage-dependent opening of these channels is directly regulated by the binding of cAMP. HCN channels are encoded by four genes (HCN1–4) and are widely expressed throughout the heart and the central nervous system. The current flowing through HCN channels, designated Ih or If, plays a key role in the control of cardiac and neuronal rhythmicity (“pacemaker current”). In addition, Ih contributes to several other neuronal processes, including determination of resting membrane potential, dendritic integration and synaptic transmission. In this review we give an overview on structure, function and regulation of HCN channels. Particular emphasis will be laid on the complex roles of these channels for neuronal function and cardiac rhythmicity. Received 22 August 2008; received after revision 22 September 2008; accepted 24 September 2008  相似文献   

18.
现有基于无线信道特征的物理层安全方法通过检测发送方的导频信号实现身份认证,易出现漏检.本文提出基于等效信道的物理层认证及密钥分发机制,利用多个时隙的信道特征对任意密钥进行加密传输建立等效信道,将信道特征的差异映射为传输畸变.依据密钥传输的正确性判断收发两端信道特征互信息的大小,从而在完成密钥的分发的同时实现发端身份认证.分析及仿真说明该机制密钥分发性能与现有方法相当,同时可以在不同空域信道相关性很强的情况下识别出窃听者的攻击.  相似文献   

19.
Diversity of Cl− Channels   总被引:5,自引:0,他引:5  
Cl channels are widely found anion pores that are regulated by a variety of signals and that play various roles. On the basis of molecular biologic findings, ligand-gated Cl channels in synapses, cystic fibrosis transmembrane conductors (CFTRs) and ClC channel types have been established, followed by bestrophin and possibly by tweety, which encode Ca2+-activated Cl channels. The ClC family has been shown to possess a variety of functions, including stabilization of membrane potential, excitation, cellvolume regulation, fluid transport, protein degradation in endosomal vesicles and possibly cell growth. The molecular structure of Cl channel types varies from 1 to 12 transmembrane segments. By means of computer-based prediction, functional Cl channels have been synthesized artificially, revealing that many possible ion pores are hidden in channel, transporter or unidentified hydrophobic membrane proteins. Thus, novel Cl-conducting pores may be occasionally discovered, and evidence from molecular biologic studies will clarify their physiologic and pathophysiologic roles. Received 28 July 2005; received after revision 25 August 2005; accepted 21 September 2005  相似文献   

20.
LmrP from Lactococcus lactis is a 45-kDa membrane protein that confers resistance to a wide variety of lipophilic compounds by acting as a proton motive force-driven efflux pump. This study shows that both the proton motive force and ligand interaction alter the accessibility of cytosolic tryptophan residues to a hydrophilic quencher. The proton motive force mediates an increase of LmrP accessibility toward the external medium and results in higher drug binding. Residues Asp128 and Asp68, from cytosolic loops, are involved in the proton motive force-mediated accessibility change. Ligand binding does not modify the protein accessibility, but the proton motive force-mediated restructuring is prerequisite for a subsequent accessibility change mediated by ligand binding. Asp142 cooperates with other membrane-embedded carboxylic residues to promote a conformational change that increases LmrP accessibility toward the hydrophilic quencher. This drug binding-mediated reorganization may be related to the transition between the high- and low-affinity drug-binding sites and is crucial for drug release in the extracellular medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号