首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Euler生成子图边数的一个定理   总被引:2,自引:2,他引:0  
证明了设G=(V,E)是2-边连通的简单图,| V |=n,δ(G)是G的最小度,若δ(G)≥max{4,n-4/5}时,G存在Euler生成子图H,使得| E(H)|/|E(G)|≥2/3;即此时Catlin的2/3--猜想成立.  相似文献   

2.
文献[3]给出了判定超欧拉图的一个定理:设G是一个2-边值通的不含K3-子图的简单图,n=|V(G)|≥31。如果δ(G)≥n/10,并且G不能被收缩成K2,3则G有一个欧拉生成子图。证明了在上述条件下,G有一个欧拉生成子图H使得|E(H)|≥2/3|(E(G)|,或者G-E(H)有平凡分支。  相似文献   

3.
记G=(V,E)是简单图,δ表示图G的最小度,NC=min{|N(x)∪N(y)|:x,y∈V(G)mxt∈E(G)|,NC2=min{|N(x)∪N(y)|:x,y∈V(G),d(x,y)=2},1989年Faudree等证明了:若3连通n阶图G,NC≥(2n 1)/3,则G是哈密尔顿连通图。据此进一步研究NC2≥(2n 1)/3,而且研究到2连通图,得到下面结果:若2连通n阶图G,NC2≥(2n 1)/3,则G是哈密尔顿连通图或G=ψ。  相似文献   

4.
用|V(G)|、|E(G)|和f(G)分别表示图G的顶点数、边数和圈数.设F(k)={f(G);G是满足|E(G)|-|V(G)|=k的无环连通图},n(k)=minF(k)和N(k)=maxF(k).证明了下述结果:(1)n(k)=k+1;(2)N(k)≤2k+1;(3)对每个整数k≥1,N(k)≥2k+k(k-1)+1且当1≤k≤4时等式成立;(4)对每个整数k≥1是奇数时,N(k)≥2k3;当k≥2是偶数时,  相似文献   

5.
与任意图2-正交的(g,f)-因子分解   总被引:4,自引:0,他引:4  
设G是一个图,用V(G)和E(G)表示它的顶点集和边集,并设g(x)和f(x)是定义在V(G)上的两个整数值函数,且对每个x∈V(G),有4≤g(x)≤f(x),则图G的一个支撑子图F称为G的一个(g,f)-因子,如果对每个x∈V(G),有g(x)≤dF(x)≤f(x)。图G的(g,f)-因子分解是指E(G)能划分成边不交的(g,f)-因子,设F={F1,F2,…,Fm}和H分别是图G的因子分解和子图,若对所有1≤i≤m有|E(H)∩E(Fi)|=2,则称F和H2-正交。本文证明:若G是一个(mg m-1,mf-m 1)-图,H是G中任一有2m条边的子图,则G有一个(g,f)-因子分解与H2-正交。  相似文献   

6.
令G=(V,E)是一个图,M是边集E(G)的子集,如果有e∈E(G)/M,e至少与M中一条边相连,则称M为图G的边控制集,进一步,若M是匹配,则称M为图G独立边控制集,本文给出关于边控制集的一些结论。(1)设图H,S是两中连勇图,且H,S∈ж,γe(S)=1,M和M′={uv}分别是图H和S的唯一最小边控制集,其中S是图1中的(G1,G2,G3,G4)四个图之一,对任何点x∈V(S)={u,v},y∈V(H)-V(M),令G=H(y=s)S,则G∈ж,(2)如果连通图G≠K2,G∈ж,γe(G)=k,则存在G的两个连通于图H,S和某两个正整数l,m使H∈ж,S∈ж,且γe(H)=k-l,γe(S)=l,G≌H(yi=xi)S,其中l≤i≤m.  相似文献   

7.
文献 [3 ]给出了判定超欧拉图的一个定理 :设G是一个 2 -边连通的不含K3-子图的简单图 ,n=|V(G) |≥ 3 1 如果δ(G) ≥ n1 0 ,并且G不能被收缩成K2 ,3,则G有一个欧拉生成子图 证明了在上述条件下 ,G有一个欧拉生成子图H使得 |E(H) |≥ 23 |E(G) | ,或者G -E(H)有平凡分支  相似文献   

8.
若图G存在欧拉生成子图,则称G是超欧拉图(supereulerian).常用SL表示全体超欧拉图组成的集合 设G是有n个点的简单图,G∈SL,如果δ(G)≥ 4且δ≥n5-1,则G存在欧拉生成子图H,使得 |E(H) | / |E(G) |≥ 3/5  相似文献   

9.
设G是一个没有4-圈的平面图,G的平方图G2定义在V(G)上,使得2个点u和v在G2中是相邻的当且仅当它们在G中的距离为1或2.证明了:δ(G2)≤Δ(G) 33,并且当δ(G)≥4时有δ(G2)≤16.其中,δ(H)和Δ(H)分别表示图H的最小度和最大度.  相似文献   

10.
二分图中相互独立的圈   总被引:1,自引:0,他引:1  
证明了下面的结论:设k≥1是一个整数,G=(V1,V2;E)是一个二分图,满足|V1|=|V2|=n≥2k 1。若对G中任意两个不相邻的面点x∈V1,y∈V2,都有d(x) d(y)≥2k 2,并且δ(G)≥2,则G包含k个相互独立的图。  相似文献   

11.
图G=(V,E)的Wiener极性指标是图G中距离为3的无序点对的数目。图G和H的点corona图,记为G°H是取G的一个拷贝和|V(G)个H的拷贝,然后把G的每个点和其相对应拷贝的每个点相连而得到的图。图G和H的边corona图,记为G◇H,是取G的一个拷贝和|E(G)|个H的拷贝,然后把G的每条边的两个点和其相对应拷贝的每个点相连而得到的图。本文给出两个图的corona乘积图的Wiener极性指标。  相似文献   

12.
设 G为 n阶 2连通无爪图,δ=min{d(x)|x∈V(G)},δ~*=min{max(d(x),d(y))|x.y∈V(G).d(x.y)=3},则(i)c(G)≥min{n.2δ~*+4};(ii)当 δ~*≥(1/2)(n-δ-2)时 G是哈密顿图。  相似文献   

13.
设 G(A_1,A_2;E)是以(A_1,A_2)为2分划的2连通的2部图.D(u)={v|v∈V(G),d(u,v)=2};δ_0=min{max{d(u),d(v)}|u,v∈V(G)且 d(u,v=2};D(δ_0)={u|u∈V(G)且d(u)≥δ_0};δ~*为 G 中某一项点度且δ~*≥δ_0,当δ~*>δ_0时δ~*还满足:(i)δ~* 尽可能的大,(ü)对 Vu∈D(δ_0)及 D~*(u)={v|v∈(D(u)U{u}),d(v)<δ~*}有|D~*(u)|相似文献   

14.
设G为一简单图,它的最大平均度mad(G)=max{2|E(H)|/|V(H)|:H为G的非空子图}.如果△(G)≥7和mad(G)≤4,或者△(G)≥5和mad(G)≤18/5,或者△(G)≥3和mad(G)〈3,则G的线性荫度为[△(c)/2].  相似文献   

15.
高度图的全色数   总被引:2,自引:0,他引:2  
证明了:如果图G的最大度顶点数r(G)满足r(G)≥|V(G)|-△(G)-1,且δ(G) 2△(G)≥5/2|V(G)| 3/2,则G的全色数xT(G)=△(G) 1。  相似文献   

16.
Catlin的2/3-猜想:若G是超欧拉图,G≠K1,那么G有一个欧拉生成子图H,使得|E(H)|≥2/3|E(G)|。给出了Catlin的2/3-猜想的一些反例。  相似文献   

17.
设G是一个顶点集为V(G),最小度为δ(G),独立数为α(G)的图, k≥2是整数。图G的支撑子图F称作是图G的分数k-因子,如果对于每一个x∈V(F)都有dhG(x)=k。如果对于图G的每条边e,图G都有一个分数k-因子包含它而且同时有一个分数k-因子不包含它,则称图G为分数k一致图。证明了如果δ( G)≥k+2,且α( G)≤4k(δ-k-1)(k+1)2,则图G是一个分数k一致图。  相似文献   

18.
设H和G为连通图,H和G的剪刀积图HG定义为:V(HG)=V(H)×V(G),E(HG)={(u,v)(s,t)|uv∈E(H),st∈E(G)}.利用电压图及其覆盖图的嵌入理论,本文研究了当第一个因子H为一条路,第二个因子G为Cayley图时,这类剪刀积图HG的亏格.本文的结果可视为目前在研究这类图的亏格上的一个补充,且较大程度上推广相关文献的主要结果.  相似文献   

19.
设G(V,E)是阶数至少是2的简单连通图,k是正整数,若f是从V(G)∪E(G)到{1,2,…,k}的一个映射,使得:对于任意的uv,vw∈E(G),u≠w,有f(uv)≠f(vw);且对于任意的uv∈E(G),u≠v,有f(u)≠f(v),f(u)≠f(uv),f(v)≠f(uv),则称f为G的一个k-全染色(简记成k-TC of G).而χt(G)=min{k|k-TC of G},称为G的全色数.设G和H是点边都不相交的简单图,V(G∨H)=V(G)∪V(H),E(G∨H)=E(G)∪E(H)∪{uv|u∈V(G),v∈V(H)},则称G∨H是G与H的联图.给出m 1阶星和n 1阶扇的联图的全色数.  相似文献   

20.
设H和G为连通图,H和G的剪刀积图H(○)G定义为:V(H(○)G)=V(H)×V(G),E(H(○)G)={(u,v) (s,t)| uv∈E(H),st∈E(G)}.利用电压图及其覆盖图的嵌入理论,本文研究了当第一个因子H为一条路,第二个因子G为Cayley图时,这类剪刀积图H(○)G的亏格.本文的结果可视为目前在研究这类图的亏格上的一个补充,且较大程度上推广相关文献的主要结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号