首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了严格对角占优M-矩阵的逆矩阵的无穷大范数上界的估计问题,利用矩阵的逆矩阵元素新的上界估计式给出了‖ A-1 ‖∞新的估计式,这些新的估计式改进了已有的结果.  相似文献   

2.
研究了弱链对角占优M矩阵A的逆矩阵A-1的元素,与‖A-1‖¥界的估计问题。利用迭代的方法,给出了A-1元素收敛的上,下界序列,同时也得到了‖A-1‖¥单调递减且收敛的上界序列。这些新的结果包含了关于该类问题已有的研究结果。  相似文献   

3.
设A为严格双对角占优矩阵,给出了‖A-1‖∞的上界估计,特别地,当A为严格对角占优矩阵,改进了现有的相关结果.  相似文献   

4.
对弱链对角占优矩阵A的主子矩阵的逆矩阵,A,A^-1的元素的关系式应用新给出的A^-1元素的上界估计式并进行放缩,得到了‖A^-1‖∞上界新的提高的只与A的元素有关的估计式.  相似文献   

5.
本文研究了拟不可约对角占优阵,利用不可约对角占优矩阵的定义与性质和较为简单的数学方法,得到了拟不可约对角占优阵的几个重要性质。  相似文献   

6.
利用弱链对角占优M-矩阵A与它的逆A-1以及A的主子矩阵B的逆B-1,它们元素之间的关系式结合严格对角占优M-矩阵的逆矩阵元素界的新估计式,得到了‖A-1‖∞新的上界.  相似文献   

7.
针对弱链对角占优M-矩阵A,利用逆矩阵元素的估计范围,给出A-1∞新的上界估计式。通过算例分析表明新的上界估计式改进了现有的一些结果。  相似文献   

8.
对弱链对角占优矩阵A的主子矩阵的逆矩阵,A,A-1的元素的关系式应用新给出的A-1元素的上界估计式并进行放缩,得到了‖A-1‖∞上界新的提高的只与A的元素有关的估计式.  相似文献   

9.
利用逆矩阵元素的范围,给出严格对角占优M-矩阵的逆矩阵无穷大范数新的上界估计式,数值算例表明新估计式改进了已有结果.  相似文献   

10.
广义对角占优矩阵在实际问题中具有广泛应用,但对该类矩阵的判别比较困难.设B为m阶无零元素的复矩阵,对B的比较矩阵A构造了1个迭代算法以及迭代终止准则,该算法的每一步迭代均得到1个正向量x(n))和占优行的序号集N0(n).证明了该迭代能在小于m次内终止,然后利用最后一步迭代的结果n0(n),导出了关于无零元素的广义对角占优矩阵和有零元素的广义对角占优的3个等价条件,推广了现有的结论,并利用数值算例,对结论的正确性和有效性进行了验证.  相似文献   

11.
严格对角占优M-矩阵作为一类特殊的H-矩阵在数值代数中有着重要作用,尤其是M-矩阵的逆矩阵的无穷大范数的上界估计,近年来得到广泛的关注和研究.引入了一组新的记号,给出了严格对角占优M-矩阵及其逆矩阵元素关系的不等式,通过给出的新不等式得到了逆矩阵的无穷大范数的新上界.新估计式改进了某些现有文献的结果,同时数值算例说明了新估计式更精确.  相似文献   

12.
利用严格对角占优M-矩阵的逆矩阵元素的上界序列,得到了‖A-1‖∞收敛的上界序列和q(A)收敛的下界序列,这些新的序列提高了现有关于该类问题的研究结果.  相似文献   

13.
针对逆矩阵的无穷大范数的上界估计问题,利用已有严格对角占优矩阵的逆矩阵的无穷大范数的上界,给出最终严格对角占优矩阵A的‖A~(-1)‖_∞的上界序列,改进了某些已有结果.数值算例显示所得上界序列是单调递减的,且在某些情况下能达到真值.  相似文献   

14.
15.
针对严格对角占优M-矩阵A的‖A~(-1)‖_∞的估计问题,利用矩阵A的元素构造迭代格式,给出A~(-1)的元素的单调不增的上界序列,进而利用这些上界序列给出‖A~(-1)‖_∞的单调不增的、收敛的上界序列.理论证明及数值算例均表明所得估计改进了目前一些已有结果.  相似文献   

16.
文章研究了非奇异弱链对角占优矩阵A的逆矩阵‖A-1‖无穷大范数‖A-1‖∞上界的估计问题,利用弱链对角占优矩阵的逆矩阵元素的上界估计式给出了‖A-1‖∞上界的新的估计式,这些估计式改进了现有的结果。  相似文献   

17.
给出了判定广义严格对角占优矩阵和非奇H矩阵的充分条件,从而得到了非奇矩阵的若干判定准则。  相似文献   

18.
利用严格对角占优M-矩阵的逆矩阵元素的上界序列,得到了1A收敛的上界序列和q(A)收敛的下界序列。这些新的序列提高了现有关于该类问题的研究结果。  相似文献   

19.
设A为严格对角占优的M-矩阵,给出了‖A-1‖∞新的上界估计式,并由此给出了A的最小特征值q(A)下界的估计式.  相似文献   

20.
一类广义局部对角占优矩阵   总被引:1,自引:0,他引:1  
引进了一类新的对角占优阵——广义局部对角占优阵,讨论了它的性质以及与M-阵之间的关系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号