首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
一种改进的BP神经网络预测方法及其应用   总被引:13,自引:0,他引:13  
李焕荣  王树明 《系统工程》2000,18(5):76-78,75
本文提出了一种改进的BP神经网络预测方法。该方法的主要优点有:网络结构简单,收敛速度快,预测精度高,减少了输入参数和样本量,笔者通过对具有高度非线性的股票价格变化进行短期预测,证明了该方法优于传统的BP神经网络方法。  相似文献   

2.
一种改进的BP算法   总被引:4,自引:1,他引:4  
讨论了网络学习过程中的假饱和现象,并给出了克服方法,同时,也讨论了学习样本输入编排机理,给出了一种避免网络学习出现的局部极小的算法。通过实例验证此方法非常有效。  相似文献   

3.
遗传算法和BP人工神经网络在税收预测中的应用   总被引:6,自引:0,他引:6  
针对经典的BP人工神经网络所存在的缺陷,结合遗传算法,提出了基于实数编码的GA-BP神经网络税收预测模型。在结合递归预测方法的基础上,该模型取得了令人满意的结果。  相似文献   

4.
一种模糊神经网络控制系统研究   总被引:6,自引:0,他引:6  
针对被控过程的非线性、时变性和复杂性,提出了一种模糊神经控制器与动态辨识器组成的控制系统。该系统的控制器采用模糊神经网络控制器,它的控制参数采用遗传算法全局离线优化对BP算法局部在线调整相结合的混合方法;该系统的辨识器采用变形Elman动态神经网络进行系统辨识。给出了该系统的结构、原理及工作流程,通过仿真实验证明该系统的可行性和有效性。  相似文献   

5.
为适应复杂油气储集层非均匀性、非线性及不确定性的响应特征,提高储层预测精度,采用PSO混合编码,提出了一种基于混合MPSO-BP的RBF自构建学习模型.该模型中,每个粒子由整数与实数两部分构成,分别对RBF的基函数的个数及相关参数(中心,宽度,输出层权值)进行编码.同时,设计了一个特殊的适应度函数,在保证精度的前提下,使网络的结构相对简单.应用于储层预测实践中,相对于RBF其他学习算法,该算法隐节点少,精度高,泛化能力强.  相似文献   

6.
一种基于文化粒子群算法的BP网络优化方法   总被引:1,自引:0,他引:1  
BP网络良好的逼近特性和泛化能力使其在模式识别、智能控制和系统决策等领域有广泛应用。但网络训练过程中存在的收敛速度慢、容易陷入局部极值等局限性限制了进一步应用。提出一种新的智能优化算法-文化粒子群算法来对BP神经网络的权值和阈值同时进行优化。算法设置了群体空间和信念空间两类独立空间,群体空间采用自适应粒子群算法完成进化,信念空间通过更新函数来进行演化。两类空间的交互通过接受操作和影响操作利用同步式传输方式完成。以Iris分类问题的BP网络模型为仿真实例,对算法的正确性和有效性进行验证。仿真结果表明,改进算法具有较快的收敛速度。  相似文献   

7.
一种输入驱动的BP网络高效学习算法   总被引:13,自引:1,他引:13  
在深入研究BP神经网络模型的基础上,从网络互连方式、网络权值初始化以及隐结点的选取等方面,对标准的BP算法作了改进.通过实验,证明该方法是非常有效的.  相似文献   

8.
改进粒子群算法优化 BP 神经网络的短时交通流预测   总被引:2,自引:2,他引:2  
为提高 BP 神经网络预测模型的预测准确性, 提出了一种基于改进粒子群算法优化 BP 神经网络的预测方法. 引入自适应变异算子对陷入局部最优的粒子进行变异, 改进了粒子群算法的寻优性能, 利用改进粒子群算法优化 BP 神经网络的权值和阈值, 然后训练 BP 神经网络预测模型求得最优解. 将该预测方法应用到实测交通流的时间序列进行有效性验证, 结果表明了该方法对短时交通流具有更好的非线性拟合能力和更高的预测准确性.  相似文献   

9.
BP小波神经网络快速学习算法研究   总被引:22,自引:0,他引:22  
讨论了BP小波神经网络在训练过程中减小误差函数时最优方向的确定和自适应调整学习率的方法.首先论证了小波神经网络的数学基础,然后讨论了BP小波神经网络的学习过程,重点讨论了减小误差函数最优方向的确定方法,即如何保证步长方向与负梯度方向一致,由此得出了自适应调整学习率的简便方法.该方法具有普遍性,有广泛的应用价值.仿真结果表明,采用最优梯度下降方向可以大幅度提高BP小波神经网络的学习速度.  相似文献   

10.
一种新混沌优化方法及在神经网络中的应用   总被引:4,自引:1,他引:4  
将遗传算法和变尺度机制引入到混沌中,提出了一种新的混沌优化方法,并将此方法应用于神经网络的训练中。通过仿真研究证实,所提出的方法优于BP算法,能够达到指定的误差指标,具有一定的泛化能力,并且具有训练次数少、精度高、实施方便等优点。  相似文献   

11.
唐云岚  高妍方  赵青松  陈英武 《系统仿真学报》2008,20(20):5523-5525,5529
传统BP神经网络算法及其改进算法都是非完全全连接神经网络算法,具有收敛速度慢,泛化能力差等不足.通过对神经网络连接方式的转化,可以得到一种完全全连接神经网络--跨越连接神经网络,并给出了跨越连接BP神经网络算法.针对卷烟制丝工艺的仿真实验表明,该算法具备描述复杂数据的能力,与传统BP算法相比,网络训练收敛速度快且泛化能力强.  相似文献   

12.
BP神经网络算法的改进及其应用   总被引:1,自引:0,他引:1  
根据BP算法的基本原理,分析指出了BP算法存在着收敛慢、接近最优时易产生波动和振荡现象的原因。在此基础上,通过进一步研究,提出了一种新的改进BP算法。改进后的BP算法不仅运算速度有所提高,而且在一定程度上克服了易产生波动和振荡现象的问题。由于改进BP算法的每个权都能找到最优学习率,因此收敛精度得到了提高;并且该算法基本不受初始学习率的影响,因而避免了学习率选取的困难。图1,表3,参4。  相似文献   

13.
BP人工神经网络自适应学习算法的建立及其应用   总被引:23,自引:3,他引:23  
解决了BP神经网络结构参数、学习速率与初始权值的选取问题,并对传统的BP算法进行了改进,提出了BP神经网络自适应学习算法,又将其编制成计算机程序,使得输入节点、隐层节点和学习速率的选取全部动态实现,减少了人为因素的干预,改善了学习速率和网络的适应能力.计算结果表明:BP神经网络自适应学习算法较传统的方法优越,训练后的神经网络模型不仅能准确地拟合训练值,而且能较精确地预测未来趋势.  相似文献   

14.
BP神经网络算法的改进   总被引:8,自引:0,他引:8  
本文分析了BP算法所面临的问题,给出了一种改进算法,说明了它们的原理和应用环境,将它们与传统的BP算法作了比较,并通过一实例验证:应用改进算法可以大幅度地提高BP神经网络的学习速度,这对BP神经网络的应用有较大实际意义。  相似文献   

15.
基于GA神经网络的个人信用评估   总被引:6,自引:0,他引:6  
提出了基于遗传算法神经网络的个人信用评估模型,利用标准遗传算法和Solis&Wets算法的混合算法同时优化神经网络的结构和权重/阈值系数,并在探讨个人信用评估指标的基础上,针对模型实际应用问题提出了解决方案.  相似文献   

16.
基于Kalman滤波的神经网络快速学习算法及应用   总被引:8,自引:0,他引:8  
本文提出一种基于Kalman滤波算法的神经网络快速学习算法(EKL).经图像边缘检测应用结果表明,该算法对于加快网络学习的收敛性有着显著成效.  相似文献   

17.
基于BP神经网络的颜色模糊量化方法   总被引:2,自引:0,他引:2  
将BP神经网络用于颜色量化过程,提出了符合人眼颜色视觉特性的颜色模糊量化方法。对RGB颜色空间向量进行空间变换,提取得到颜色特征向量。对特征向量标准化处理后,作为BP神经网络的输入向量。将训练样本的期望类别输出做模糊化预处理,用模糊化后的隶属度值作为样本的目标期望输出。利用样本集对改进的BP神经网络进行训练.基于最大隶属原则对神经网络输入特征向量进行分类和量化。使用训练后的BP神经网络进行颜色量化的仿真实验,验证了所提出方法的有效性。  相似文献   

18.
SOFTWARE,ALGORITHM AND SIMULATION1. INTSODUCTIONWith the development of theoretical research and the demands of practice, the artificial neural network (ANN)has been widely used in mad fields, such as time series prediction, signal processing, pattern recognition andproduction control. By now, among the numerous models of neural networks, MLP is used most widely andhas acquired the greatest achievement. Even so, the BP algorithm, which is used ill training MLP, is a kind o…  相似文献   

19.
训练前向神经网络的全局优化新算法及其应用   总被引:10,自引:0,他引:10  
把填充函数法与BP算法相结合,提出一种训练前向神经网络的混合型全局优化新算法。该算法首先由BP算法得到一个局部极小点,然后利用充函数使BP算法跳出局部最优,得到一个更低的极小点。重复此过程最终求得全局最优解。最后给出一个应用实例。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号