首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gomberg J  Reasenberg PA  Bodin P  Harris RA 《Nature》2001,411(6836):462-466
The proximity and similarity of the 1992, magnitude 7.3 Landers and 1999, magnitude 7.1 Hector Mine earthquakes in California permit testing of earthquake triggering hypotheses not previously possible. The Hector Mine earthquake confirmed inferences that transient, oscillatory 'dynamic' deformations radiated as seismic waves can trigger seismicity rate increases, as proposed for the Landers earthquake. Here we quantify the spatial and temporal patterns of the seismicity rate changes. The seismicity rate increase was to the north for the Landers earthquake and primarily to the south for the Hector Mine earthquake. We suggest that rupture directivity results in elevated dynamic deformations north and south of the Landers and Hector Mine faults, respectively, as evident in the asymmetry of the recorded seismic velocity fields. Both dynamic and static stress changes seem important for triggering in the near field with dynamic stress changes dominating at greater distances. Peak seismic velocities recorded for each earthquake suggest the existence of, and place bounds on, dynamic triggering thresholds. These thresholds vary from a few tenths to a few MPa in most places, depend on local conditions, and exceed inferred static thresholds by more than an order of magnitude. At some sites, the onset of triggering was delayed until after the dynamic deformations subsided. Physical mechanisms consistent with all these observations may be similar to those that give rise to liquefaction or cyclic fatigue.  相似文献   

2.
Freed AM  Lin J 《Nature》2001,411(6834):180-183
Stress changes in the crust due to an earthquake can hasten the failure of neighbouring faults and induce earthquake sequences in some cases. The 1999 Hector Mine earthquake in southern California (magnitude 7.1) occurred only 20 km from, and 7 years after, the 1992 Landers earthquake (magnitude 7.3). This suggests that the Hector Mine earthquake was triggered in some fashion by the earlier event. But uncertainties in the slip distribution and rock friction properties associated with the Landers earthquake have led to widely varying estimates of both the magnitude and sign of the resulting stress change that would be induced at the location of the Hector Mine hypocentre-with estimates varying from -1.4 bar (ref. 6) to +0.5 bar (ref. 7). More importantly, coseismic stress changes alone cannot satisfactorily explain the delay of 7 years between the two events. Here we present the results of a three-dimensional viscoelastic model that simulates stress transfer from the ductile lower crust and upper mantle to the brittle upper crust in the 7 years following the Landers earthquake. Using viscoelastic parameters that can reproduce the observed horizontal surface deformation following the Landers earthquake, our calculations suggest that lower-crustal or upper-mantle flow can lead to postseismic stress increases of up to 1-2 bar at the location of the Hector Mine hypocentre during this time period, contributing to the eventual occurrence of the 1999 Hector Mine earthquake. These results attest to the importance of considering viscoelastic processes in the assessment of seismic hazard.  相似文献   

3.
Gomberg J  Bodin P  Larson K  Dragert H 《Nature》2004,427(6975):621-624
The permanent and dynamic (transient) stress changes inferred to trigger earthquakes are usually orders of magnitude smaller than the stresses relaxed by the earthquakes themselves, implying that triggering occurs on critically stressed faults. Triggered seismicity rate increases may therefore be most likely to occur in areas where loading rates are highest and elevated pore pressures, perhaps facilitated by high-temperature fluids, reduce frictional stresses and promote failure. Here we show that the 2002 magnitude M = 7.9 Denali, Alaska, earthquake triggered widespread seismicity rate increases throughout British Columbia and into the western United States. Dynamic triggering by seismic waves should be enhanced in directions where rupture directivity focuses radiated energy, and we verify this using seismic and new high-sample GPS recordings of the Denali mainshock. These observations are comparable in scale only to the triggering caused by the 1992 M = 7.4 Landers, California, earthquake, and demonstrate that Landers triggering did not reflect some peculiarity of the region or the earthquake. However, the rate increases triggered by the Denali earthquake occurred in areas not obviously tectonically active, implying that even in areas of low ambient stressing rates, faults may still be critically stressed and that dynamic triggering may be ubiquitous and unpredictable.  相似文献   

4.
Damage to the shallow Landers fault from the nearby Hector Mine earthquake   总被引:2,自引:0,他引:2  
Vidale JE  Li YG 《Nature》2003,421(6922):524-526
Crustal faults have long been identified as sites where localized sliding motion occurs during earthquakes, which allows for the relative motion between adjacent crustal blocks. Although there is a growing awareness that we must understand the evolution of fault systems on many timescales to relate present-day crustal stresses and fault motions to geological structures formed in the past, fault-zone damage and healing have been documented quantitatively in only a few cases. We have been monitoring the healing of damage on the shallow Johnson Valley fault after its rupture in the 1992 magnitude-7.3 Landers earthquake, and here we report that this healing was interrupted in 1999 by the magnitude-7.1 Hector Mine earthquake rupture, which occurred 20-30 km away. The Hector Mine earthquake both strongly shook and permanently strained the Johnson Valley fault, adding damage discernible as a temporary reversal of the healing process. The fault has since resumed the trend of strength recovery that it showed after the Landers earthquake. These observations lead us to speculate that fault damage caused by strong seismic waves may help to explain earthquake clustering and seismicity triggering by shaking, and may be involved in friction reduction during faulting.  相似文献   

5.
Fialko Y  Sandwell D  Simons M  Rosen P 《Nature》2005,435(7040):295-299
Our understanding of the earthquake process requires detailed insights into how the tectonic stresses are accumulated and released on seismogenic faults. We derive the full vector displacement field due to the Bam, Iran, earthquake of moment magnitude 6.5 using radar data from the Envisat satellite of the European Space Agency. Analysis of surface deformation indicates that most of the seismic moment release along the 20-km-long strike-slip rupture occurred at a shallow depth of 4-5 km, yet the rupture did not break the surface. The Bam event may therefore represent an end-member case of the 'shallow slip deficit' model, which postulates that coseismic slip in the uppermost crust is systematically less than that at seismogenic depths (4-10 km). The InSAR-derived surface displacement data from the Bam and other large shallow earthquakes suggest that the uppermost section of the seismogenic crust around young and developing faults may undergo a distributed failure in the interseismic period, thereby accumulating little elastic strain.  相似文献   

6.
Earthquake slip on oceanic transform faults   总被引:4,自引:0,他引:4  
Abercrombie RE  Ekström G 《Nature》2001,410(6824):74-77
Oceanic transform faults are one of the main types of plate boundary, but the manner in which they slip remains poorly understood. Early studies suggested that relatively slow earthquake rupture might be common; moreover, it has been reported that very slow slip precedes some oceanic transform earthquakes, including the 1994 Romanche earthquake. The presence of such detectable precursors would have obvious implications for earthquake prediction. Here we model broadband seismograms of body waves to obtain well-resolved depths and rupture mechanisms for 14 earthquakes on the Romanche and Chain transform faults in the equatorial Atlantic Ocean. We found that earthquakes on the longer Romanche transform are systematically deeper than those on the neighbouring Chain transform. These depths indicate that the maximum depth of brittle failure is at a temperature of approximately 600 degrees C in oceanic lithosphere. We find that the body waves from the Romanche 1994 earthquake can be well modelled with relatively deep slip on a single fault, and we use the mechanism and depth of this earthquake to recalculate its source spectrum. The previously reported slow precursor can be explained as an artefact of uncertainties in the assumed model parameters.  相似文献   

7.
Triggering of earthquake aftershocks by dynamic stresses   总被引:20,自引:0,他引:20  
Kilb D  Gomberg J  Bodin P 《Nature》2000,408(6812):570-574
It is thought that small 'static' stress changes due to permanent fault displacement can alter the likelihood of, or trigger, earthquakes on nearby faults. Many studies of triggering in the near-field, particularly of aftershocks, rely on these static changes as the triggering agent and consider them only in terms of equivalent changes in the applied load on the fault. Here we report a comparison of the aftershock pattern of the moment magnitude Mw = 7.3 Landers earthquake, not only with static stress changes but also with transient, oscillatory stress changes transmitted as seismic waves (that is, 'dynamic' stresses). Dynamic stresses do not permanently change the applied load and thus can trigger earthquakes only by altering the mechanical state or properties of the fault zone. These dynamically weakened faults may fail after the seismic waves have passed by, and might even cause earthquakes that would not otherwise have occurred. We find similar asymmetries in the aftershock and dynamic stress patterns, the latter being due to rupture propagation, whereas the static stress changes lack this asymmetry. Previous studies have shown that dynamic stresses can promote failure at remote distances, but here we show that they can also do so nearby.  相似文献   

8.
Gao SS  Silver PG  Linde AT  Sacks IS 《Nature》2000,406(6795):500-504
The mechanism responsible for the triggering of earthquakes remains one of the least-understood aspects of the earthquake process. The magnitude-7.3 Landers, California earthquake of 28 June 1992 was followed for several weeks by triggered seismic activity over a large area, encompassing much of the western United States. Here we show that this triggered seismicity marked the beginning of a five-year trend, consisting of an elevated microearthquake rate that was modulated by an annual cycle, decaying with time. The annual cycle is mainly associated with several hydrothermal or volcanic regions where short-term triggering was also observed. These data indicate that the Landers earthquake produced long-term physical changes in these areas, and that an environmental source of stress--plausibly barometric pressure--might be responsible for the annual variation.  相似文献   

9.
Plateau 'pop-up' in the great 1897 Assam earthquake   总被引:5,自引:0,他引:5  
Bilham R  England P 《Nature》2001,410(6830):806-809
The great Assam earthquake of 12 June 1897 reduced to rubble all masonry buildings within a region of northeastern India roughly the size of England, and was felt over an area exceeding that of the great 1755 Lisbon earthquake. Hitherto it was believed that rupture occurred on a north-dipping Himalayan thrust fault propagating south of Bhutan. But here we show that the northern edge of the Shillong plateau rose violently by at least 11 m during the Assam earthquake, and that this was due to the rupture of a buried reverse fault approximately 110 km in length and dipping steeply away from the Himalaya. The stress drop implied by the rupture geometry and the prodigious fault slip of 18 +/- 7 m explains epicentral accelerations observed to exceed 1g vertically and surface velocities exceeding 3 m s-1 (ref. 1). This quantitative observation of active deformation of a 'pop-up' structure confirms that faults bounding such structures can penetrate the whole crust. Plateau uplift in the past 2-5 million years has caused the Indian plate to contract locally by 4 +/- 2 mm yr-1, reducing seismic risk in Bhutan but increasing the risk in northern Bangladesh.  相似文献   

10.
Particle size and energetics of gouge from earthquake rupture zones   总被引:6,自引:0,他引:6  
Wilson B  Dewers T  Reches Z  Brune J 《Nature》2005,434(7034):749-752
Grain size reduction and gouge formation are found to be ubiquitous in brittle faults at all scales, and most slip along mature faults is observed to have been localized within gouge zones. This fine-grain gouge is thought to control earthquake instability, and thus understanding its properties is central to an understanding of the earthquake process. Here we show that gouge from the San Andreas fault, California, with approximately 160 km slip, and the rupture zone of a recent earthquake in a South African mine with only approximately 0.4 m slip, display similar characteristics, in that ultrafine grains approach the nanometre scale, gouge surface areas approach 80 m2 g(-1), and grain size distribution is non-fractal. These observations challenge the common perception that gouge texture is fractal and that gouge surface energy is a negligible contributor to the earthquake energy budget. We propose that the observed fine-grain gouge is not related to quasi-static cumulative slip, but is instead formed by dynamic rock pulverization during the propagation of a single earthquake.  相似文献   

11.
Smith DK  Cann JR  Escartín J 《Nature》2006,442(7101):440-443
Oceanic core complexes are massifs in which lower-crustal and upper-mantle rocks are exposed at the sea floor. They form at mid-ocean ridges through slip on detachment faults rooted below the spreading axis. To date, most studies of core complexes have been based on isolated inactive massifs that have spread away from ridge axes. Here we present a survey of the Mid-Atlantic Ridge near 13 degrees N containing a segment in which a number of linked detachment faults extend for 75 km along one flank of the spreading axis. The detachment faults are apparently all currently active and at various stages of development. A field of extinct core complexes extends away from the axis for at least 100 km. Our observations reveal the topographic characteristics of actively forming core complexes and their evolution from initiation within the axial valley floor to maturity and eventual inactivity. Within the surrounding region there is a strong correlation between detachment fault morphology at the ridge axis and high rates of hydroacoustically recorded earthquake seismicity. Preliminary examination of seismicity and seafloor morphology farther north along the Mid-Atlantic Ridge suggests that active detachment faulting is occurring in many segments and that detachment faulting is more important in the generation of ocean crust at this slow-spreading ridge than previously suspected.  相似文献   

12.
McGuire JJ  Boettcher MS  Jordan TH 《Nature》2005,434(7032):457-461
East Pacific Rise transform faults are characterized by high slip rates (more than ten centimetres a year), predominantly aseismic slip and maximum earthquake magnitudes of about 6.5. Using recordings from a hydroacoustic array deployed by the National Oceanic and Atmospheric Administration, we show here that East Pacific Rise transform faults also have a low number of aftershocks and high foreshock rates compared to continental strike-slip faults. The high ratio of foreshocks to aftershocks implies that such transform-fault seismicity cannot be explained by seismic triggering models in which there is no fundamental distinction between foreshocks, mainshocks and aftershocks. The foreshock sequences on East Pacific Rise transform faults can be used to predict (retrospectively) earthquakes of magnitude 5.4 or greater, in narrow spatial and temporal windows and with a high probability gain. The predictability of such transform earthquakes is consistent with a model in which slow slip transients trigger earthquakes, enrich their low-frequency radiation and accommodate much of the aseismic plate motion.  相似文献   

13.
Parsons T  Ji C  Kirby E 《Nature》2008,454(7203):509-510
On 12 May 2008, the devastating magnitude 7.9 (Wenchuan) earthquake struck the eastern edge of the Tibetan plateau, collapsing buildings and killing thousands in major cities aligned along the western Sichuan basin in China. After such a large-magnitude earthquake, rearrangement of stresses in the crust commonly leads to subsequent damaging earthquakes. The mainshock of the 12 May earthquake ruptured with as much as 9 m of slip along the boundary between the Longmen Shan and Sichuan basin, and demonstrated the complex strike-slip and thrust motion that characterizes the region. The Sichuan basin and surroundings are also crossed by other active strike-slip and thrust faults. Here we present calculations of the coseismic stress changes that resulted from the 12 May event using models of those faults, and show that many indicate significant stress increases. Rapid mapping of such stress changes can help to locate fault sections with relatively higher odds of producing large aftershocks.  相似文献   

14.
The use of earthquake rate changes as a stress meter at Kilauea volcano   总被引:2,自引:0,他引:2  
Dieterich J  Cayol V  Okubo P 《Nature》2000,408(6811):457-460
Stress changes in the Earth's crust are generally estimated from model calculations that use near-surface deformation as an observational constraint. But the widespread correlation of changes of earthquake activity with stress has led to suggestions that stress changes might be calculated from earthquake occurrence rates obtained from seismicity catalogues. Although this possibility has considerable appeal, because seismicity data are routinely collected and have good spatial and temporal resolution, the method has not yet proven successful, owing to the non-linearity of earthquake rate changes with respect to both stress and time. Here, however, we present two methods for inverting earthquake rate data to infer stress changes, using a formulation for the stress- and time-dependence of earthquake rates. Application of these methods at Kilauea volcano, in Hawaii, yields good agreement with independent estimates, indicating that earthquake rates can provide a practical remote-sensing stress meter.  相似文献   

15.
Di Toro G  Goldsby DL  Tullis TE 《Nature》2004,427(6973):436-439
An important unsolved problem in earthquake mechanics is to determine the resistance to slip on faults in the Earth's crust during earthquakes. Knowledge of coseismic slip resistance is critical for understanding the magnitude of shear-stress reduction and hence the near-fault acceleration that can occur during earthquakes, which affects the amount of damage that earthquakes are capable of causing. In particular, a long-unresolved problem is the apparently low strength of major faults, which may be caused by low coseismic frictional resistance. The frictional properties of rocks at slip velocities up to 3 mm s(-1) and for slip displacements characteristic of large earthquakes have been recently simulated under laboratory conditions. Here we report data on quartz rocks that indicate an extraordinary progressive decrease in frictional resistance with increasing slip velocity above 1 mm s(-1). This reduction extrapolates to zero friction at seismic slip rates of approximately 1 m s(-1), and appears to be due to the formation of a thin layer of silica gel on the fault surface: it may explain the low strength of major faults during earthquakes.  相似文献   

16.
Predicting the endpoints of earthquake ruptures   总被引:8,自引:0,他引:8  
Wesnousky SG 《Nature》2006,444(7117):358-360
The active fault traces on which earthquakes occur are generally not continuous, and are commonly composed of segments that are separated by discontinuities that appear as steps in map-view. Stress concentrations resulting from slip at such discontinuities may slow or stop rupture propagation and hence play a controlling role in limiting the length of earthquake rupture. Here I examine the mapped surface rupture traces of 22 historical strike-slip earthquakes with rupture lengths ranging between 10 and 420 km. I show that about two-thirds of the endpoints of strike-slip earthquake ruptures are associated with fault steps or the termini of active fault traces, and that there exists a limiting dimension of fault step (3-4 km) above which earthquake ruptures do not propagate and below which rupture propagation ceases only about 40 per cent of the time. The results are of practical importance to seismic hazard analysis where effort is spent attempting to place limits on the probable length of future earthquakes on mapped active faults. Physical insight to the dynamics of the earthquake rupture process is further gained with the observation that the limiting dimension appears to be largely independent of the earthquake rupture length. It follows that the magnitude of stress changes and the volume affected by those stress changes at the driving edge of laterally propagating ruptures are largely similar and invariable during the rupture process regardless of the distance an event has propagated or will propagate.  相似文献   

17.
提出了潮汐应力对发震断层的力学模式,描述了附加潮汐应力对发震断层的促滑作用方式,并将该模式应用于云南及邻区的地震,计算了173个地震震源处沿主压应力P轴和主张应力T轴方向的附加潮汐应力分量,分析了这睦量对发震断层的作用方式以及受潮汐应力促滑作用的发震断层类型,结果表明,所研究的云南及邻区发生的173个地震中,64%的地震发震断层受到潮汐应力的促滑作用,其中,受减压型促滑作用的发震断层数比例略大于受增压型促滑作用的发动层数比例;在受到潮汐应力促滑作用的111个发震断层中,走滑型发震断层占67%,倾滑斜滑型发震断层占33%,说明云南及邻区的走滑型地震较易受到潮汐应力的触发作用。  相似文献   

18.
The Sumatra-Andaman earthquake of 26 December 2004 is the first giant earthquake (moment magnitude M(w) > 9.0) to have occurred since the advent of modern space-based geodesy and broadband seismology. It therefore provides an unprecedented opportunity to investigate the characteristics of one of these enormous and rare events. Here we report estimates of the ground displacement associated with this event, using near-field Global Positioning System (GPS) surveys in northwestern Sumatra combined with in situ and remote observations of the vertical motion of coral reefs. These data show that the earthquake was generated by rupture of the Sunda subduction megathrust over a distance of >1,500 kilometres and a width of <150 kilometres. Megathrust slip exceeded 20 metres offshore northern Sumatra, mostly at depths shallower than 30 kilometres. Comparison of the geodetically and seismically inferred slip distribution indicates that approximately 30 per cent additional fault slip accrued in the 1.5 months following the 500-second-long seismic rupture. Both seismic and aseismic slip before our re-occupation of GPS sites occurred on the shallow portion of the megathrust, where the large Aceh tsunami originated. Slip tapers off abruptly along strike beneath Simeulue Island at the southeastern edge of the rupture, where the earthquake nucleated and where an M(w) = 7.2 earthquake occurred in late 2002. This edge also abuts the northern limit of slip in the 28 March 2005 M(w) = 8.7 Nias-Simeulue earthquake.  相似文献   

19.
Liu  Jie  Chen  Yong  Chen  Ling  Chen  Qifu  Li  Minfeng 《科学通报(英文版)》1999,44(3):246-246
Some earthquakes in recent years (such as Tangshan earthquake (1976, China), North Ridge earthquake (1994, USA), Kobe earthquake (1995, Japan)) did not occur in known faults; moreover, the detailed data of geology, earthquake, crust deformation, etc. needed by the fault model are very difficult to obtain in many regions of the world. A simplified method of global seismic hazard analysis is developed, based on an area source model and by using seismicity data, and the global seismic hazard map is compiled. To evaluate the effectiveness and credibility of the new method, comparison study of this map with the existing national maps has been performed, which implies that it is considerably valuable to apply this method to practical use.  相似文献   

20.
Ishii M  Shearer PM  Houston H  Vidale JE 《Nature》2005,435(7044):933-936
The disastrous Sumatra-Andaman earthquake of 26 December 2004 was one of the largest ever recorded. The damage potential of such earthquakes depends on the extent and magnitude of fault slip. The first reliable moment magnitude estimate of 9.0 was obtained several hours after the Sumatra-Andaman earthquake, but more recent, longer-period, normal-mode analyses have indicated that it had a moment magnitude of 9.3, about 2.5 times larger. Here we introduce a method for directly imaging earthquake rupture that uses the first-arriving compressional wave and is potentially able to produce detailed images within 30 min of rupture initiation. We used the Hi-Net seismic array in Japan as an antenna to map the progression of slip by monitoring the direction of high-frequency radiation. We find that the rupture spread over the entire 1,300-km-long aftershock zone by propagating northward at roughly 2.8 km s(-1) for approximately 8 minutes. Comparisons with the aftershock areas of other great earthquakes indicate that the Sumatra-Andaman earthquake did indeed have a moment magnitude of approximately 9.3. Its rupture, in both duration and extent, is the longest ever recorded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号