首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
将基于单隐层前馈神经网络(SLFN)提出的极速学习机(ELM)算法和邻域粗糙集理论进行结合,提出基于邻域粗糙集的极速学习机算法,采用邻域粗糙集对样本集进行属性约简,去掉冗余属性,利用ELM对约简后的数据集进行学习,并对数据样本进行预测。实验表明ELM算法相比具有更高的训练精度和测试精度。  相似文献   

2.
基于属性约简的方法,放弃以往复杂的规则匹配算法,提出将约简后的多种属性组进行析取,筛选特征项,并构造分类器.实验结果表明,此算法不仅简单,还能降低维数和提高分类结果.  相似文献   

3.
在分析单一、给定的邻域大小设定方法弊端的基础上,提出了基于属性数据标准差的阁值设定方法,并将蚁群优化算法引入到属性约简中,以属性重要度为启发信息,构造了基于邻域粗糙集和蚁群优化的属性约简算法,使用了4个UCI数据集进行约简.实验结果表明,提出的算法在约简的分类精度和约简中属性个数方面具有更好的性能.  相似文献   

4.
粗糙集理论是一种有效的属性约简方法,但不能直接处理实值数据。针对此问题,本文首先介绍了邻域和覆盖的概念,在此基础上构造了覆盖自约简和覆盖间约简(属性约简)算法;然后通过讨论邻域内各样本之间关系,提出了相斥元的定义,相斥元的存在可能导致决策正域计算错误,从而得到不符合数据表实际情况的属性依赖性,因此给出了分解相斥元的方法;最后在四个实值的基因表达数据库上进行了实验,结果表明该属性约简算法是有效的,并相对于现有其他算法具有较高的分类精度。  相似文献   

5.
针对核动力系统故障诊断过程中故障的特征参数难以提取的问题,提出了一种基于邻域粗糙集模型的特征参数筛选的新方法。该方法是通过改进经典粗糙集而来的,其既能够处理离散化的数据,也处理连续型的数据,因此可以减少诊断信息融合过程的复杂性,同时处理后的数据能够保持原始数据的属性性质。仿真实验表明:基于邻域粗糙集能有效的简化特征参数的筛选,提高了故障诊断的准确率,减少了诊断成本,相比于经典粗糙集方法更具有适用性。  相似文献   

6.
不确定性度量在属性约简中具有重要作用.通过逐步构建3种改进的单调不确定性度量,为属性约简提供重要依据.首先,通过2个阈值,构建邻域概率粗糙集模型,并提出3种具有非单调性的邻域概率不确定性度量;为此,将邻域概率粗糙集与邻域粗糙集结合,改进性地提出了具有单调性的3种改进的邻域概率不确定性度量;最后,通过UCI数据实验对以上...  相似文献   

7.
该文从多视角考虑粗糙近似逼近问题,讨论了邻域系统粗糙集模型的性质.将邻域系统粗糙集模型与两种重要的广义粗糙集模型,即可变精度粗糙集和多粒度粗糙集进行了对比分析,分别根据分类错误率和多粒度构建了不同的领域系统.该文研究结果证明了可变精度粗糙集模型和多粒度粗糙集模型是邻域系统粗糙集模型的特例,邻域系统粗糙集模型是一种更为广义的粗糙集表现形式.  相似文献   

8.
LDA可以实现大量数据集合中潜在主题的挖掘与文本信息的分类,模型假设,如果文档与某主题相关,那么文档中的所有单词都与该主题相关.然而,在面对实际环境中大规模的数据,这会导致主题范围的扩大,不能对主题单词的潜在语义进行准确定位,限制了模型的鲁棒性和有效性.本文针对LDA的这一弊端提出了新的文档主题分类算法gLDA,该模型通过增加主题类别分布参数确定主题的产生范围,提高分类的准确性.Reuters-21578数据集与复旦大学文本语料库中的数据结果证明,相对于传统的主题分类模型,该模型的分类效果得到了一定程度的提高.  相似文献   

9.
为了去除系统中的冗余属性,保持系统的分类能力,研究了连续值分布式数据的属性约简.给出了连续值分布式决策信息系统中邻域粗糙集的定义,讨论了分布式连续值决策信息系统中正域计算的可分解性.以保持分布式决策信息系统的正域不变为前提,探讨了分布式决策信息系统中属性的可约性,提出了分布式连续值决策信息系统的属性约简算法.为了验证该算法的有效性,在7份数据集上进行了3组实验.实验使用提出的算法对分布式数据进行属性约简,进而采用加权集成的方式进行分类测试.实验结果表明,该算法能够有效去除连续值分布式数据中的冗余属性,使得约简后的连续值分布式数据的集成分类能力与约简前相差不大.甚至更高.  相似文献   

10.
为了从海量的信息资源库中快速、准确地进行分类并提取出有用的信息,提出了一种基于粗糙集和KNN混合的Web文本分类模型。利用粗糙集的属性约简理论降低了文本分类过程中的向量维数,使用一种基于分明矩阵的属性约简算法,特征选择过程采用互信息量计算方法,并对该混合算法进行了实验,同时结合传统的KNN方法对该混合算法进行比较,验证该算法的可行性。  相似文献   

11.
基于贝叶斯粗糙集的文本特征选择方法   总被引:3,自引:1,他引:2  
特征选择是文本分类的一个核心研究课题.首先给出了一个基于最小词频的文档频,然后简单分析了经典粗糙集和变精度粗糙集的不足,紧接着把贝叶斯粗糙集引入进来并提出了一个属性约简算法,最后把该属性约简算法同基于最小词频的文档频结合起来,提出了一个综合的特征选择方法.该综合方法首先利用基于最小词频的文档频提取初始特征,然后利用所提属性约简算法消除冗余,从而获得较具代表性的特征子集.实验结果表明,该算法是有效的.  相似文献   

12.
苟和平 《科学技术与工程》2012,12(20):4926-4929
K最近邻算法(KNN)被认为是向量空间模型下最好的分类算法之一,在准确率和召回率方面比较出众,但随着样本数量的增加其相似度计算开销很大。本文提出一种改进算法RS-KNN,主要是利用粗糙集的相关理论,计算训练样本集中各样本子类的上近似空间和下近似空间,根据待分类文本出现在不同的近似空间,以缩减与待分类样本计算相似度的训练样本个数。实验表明此算法能够有效地降低分类计算开销。  相似文献   

13.
通过研究邻域覆盖、覆盖导出的划分之间的内在关系,给出了一种新的转化方法.新方法证明了由一个覆盖可唯一导出一个划分、由覆盖与其覆盖约简导出的划分一致等结论,而且得出了由覆盖导出的等价关系的上、下近似算子更加细分等优良性质;提高了集合的近似程度,能更好地用于属性约简、核的求取和规则的生成等方面研究.  相似文献   

14.
文本聚类的关键是对高维的特征集进行降维.本文对常用的一些特征选择、特征抽取等主流特征降维方法进行了介绍,分析了它们各自的特点及其适用范围.  相似文献   

15.
粗糙集理论的主要思想是在保持分类能力不变的前提下,通过属性约简和值约简,提取决策规则。本文主要是提出了利用隶属度函数进行值约简的同时提取决策规则的算法。利用该算法可在不求得核值表的情况下,直接找到各规则的最小条件属性集,获得决策表的所有决策规则。  相似文献   

16.
利用粗集理论,通过建模构造了数据集在约简前后的信息损失表达的灰色区域,将少数优先和多数优先的统计策略包含到灰色区域之中,并利用该区域,提出了一种灰色区域表征的σδ-近似约简方法,通过仿真实验,对提出的方法进行了验证。该方法按照人的要求调整阂值获得问题所需解的思想体现了人机结合以人为主的思想。  相似文献   

17.
在基于联系度的粗糙集模型中引入条件属性存在重要性差异的因素,定义了不完备决策表中对象间的重要性联系度,提出了基于重要性联系度的粗糙集扩展模型.在此模型中给出了对不完备决策表进行属性约简和规则提取的算法,并以Visual C++6.0为开发工具编写了程序,进一步验证了算法的正确性和模型的可靠性.  相似文献   

18.
文本特征选择是自然语言处理中的关键问题。针对文本特征的高维性和稀疏性问题,在过滤式特征选择算法文档-逆文档评率(term frequency-inverse document frequency, TF-IDF)的基础上,提出了用遗传算法对文本特征进行优化选择,使其最大程度地贴合后续的文本分类算法,在保证文本分类精确度的同时,降低特征维度以缩减预测时间。实验显示,该算法与单一的过滤式文本特征选择算法相比,能够有效减少所选文本特征数量(即降低特征维度),能有效提高文本的分类能力。  相似文献   

19.
网络的普及和交互电视的应用推动了视频分类的发展,迫切需要一种方便、快速的自动视频分类方法。本研究利用从视频片段中提取的与镜头有关的特征、颜色特征、音频特征和运动特征作为视频内容分类的可计算特征,并基于粗糙集理论,发挥其无需先验信息而从信息系统中分析多余属性的能力和从决策表中抽取规则的能力,对上述可计算特征进行分类形成规则,从而实现对视频片段的分类。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号