共查询到19条相似文献,搜索用时 58 毫秒
1.
针对传统特征选择算法的不足, 提出一种新的特征选择算法. 该算法能综合度量一个特征在类内和类间的重要性, 并在3个不同的数据集上利用2个分类器与5个现有的特征选择方法进行了对比实验. 实验结果表明, 该算法进一步降低了特征向量空间的维度, 并有效提高了分类器的分类性能. 相似文献
2.
基于遗传算法的文本聚类特征选择 总被引:3,自引:0,他引:3
传统的文本聚类特征选择方法不能发现最优特征集,而遗传算法能获得全局最优解且具有高的寻优效率,因此提出利用遗传算法进行文本聚类的特征选择.把一种特征组合看作一个染色体,对其进行二进制编码,引入文本集密度作为适应度函数进行特征个体适应度的评价.通过选择、交叉和变异的遗传操作,能较为快速地求出最优特征集.对公开的文本分类语料所进行的实验表明,基于遗传算法的特征选择使文本聚类结果的精度较之特征选择前提高了5.9%,而聚类时间减少了15 s. 相似文献
3.
在自动文本分类系统中,特征选择是有效降低文本向量维数的一种方法.在分析常用的一些特征选择的评价函数的基础上,提出了一种新的特征选择方法.在标准中文网页数据集上的分类实验表明,该方法提高了文本分类的准确率. 相似文献
4.
首先介绍了几种常见的特征选择和特征抽取方法,并结合K-近邻分类算法对4种特征选择方法进行了分类测试,同时通过测试分析,提出了一些改进的、可行的互信息评价函数. 相似文献
5.
特性选择是文本分类、机器学习以及模式识别领域的重要问题之一.特征选择能在保证数据完整性的情况下减少高维数据的特征维数,同时提高分类的精度.以往提出的基于同义词词林的特征选择方法虽然能有效避免提取出的特征值在概念上的重复性,但并未考虑到权值最优的特征向量构成的子集可能并非是最优的.为了解决此问题,结合同义词和遗传算法,提出了一种新的基于同义词词林的文本特征选择方法.该方法首先对特征词进行同义词过滤、合并,在降低特征向量维度的同时避免了同义词带来的影响.然后采用改进的遗传算法选出具有较好适应度值的特征向量.实验结果表明,这种方法较之以往提出的方法,在保证特征选择准确率的基础上能明显地减小特征向量的维度. 相似文献
6.
提出一种基于相似融合的文本特征降维方法.首先求出不同聚类结果中每个簇的对应关系,然后计算这几个聚类结果对应簇的交集,对求交集后剩余的特征使用一种改进的互信息方法进行二次聚类,在最大限度减少信息损失的前提下实现了文本特征的有效降维.对文本的分类实验结果表明,该方法具有良好的降维效果,并且提高了聚类的效率. 相似文献
7.
针对文本特征选择中原始特征空间维数过高,提出一种基于类别相关性及遗传算法的文本特征选择方法.有效地降低了特征空间的维数,提高了分类准确率.实验验证了该方法的有效性. 相似文献
8.
基于知网语义相似度计算的特征降维方法研究 总被引:8,自引:1,他引:8
针对文本分类处理中的高维度问题,结合知网语义词典,提出了一种新的特征降维处理方法.通过计算特征词汇之间的语义相似度,将原有特征集分成若干特征词集;同一词集内的特征词语义彼此间相似;而不同词集的特征词彼此间相似度比较小.将同一特征词集内的词汇权重相加,从而突出同义词以及近义词对文本分类的贡献,并可以大大降低文本比较的特征维数.实验结果表明,利用该方法在文本分类中得到了较好的分类准确率和分类性能. 相似文献
9.
文本特征选择对提高文本分类的速度和准确率,改善网络信息过滤效果至关重要.把特征选择看作优化组合问题,提出用遗传算法进行文本特征选择.传统遗传算法适应性较差,本文对传统遗传算法交叉概率、变异概率、更新策略等重要参数和关键环节作了改进,实验验证了该算法的有效性. 相似文献
10.
特征权值的选择是文本分类技术的基础环节.在详细分析文本分类技术特点的基础上,基于信息熵理论建立了TF_IDF的改进算法模型;并根据实际工程数据,验证了算法模型的有效性.理论分析和实例验证表明该算法弥补了传统TFIDF算法没有考虑词条文本类间分布的不足,能更好的体现特征词条的权重,从而能有效提高分类的精确度. 相似文献
11.
采用基因集的形式对传统遗传算法的编码方式进行改进,再引入模拟退火的思想,提出一种基于基因集编码的遗传退火算法的文本特征抽取方法(GSGAA),并与遗传算法(GA)和模拟退火GA算法(SA-GA)进行比较实验。结果表明,GSGAA算法用于文本分类的特征抽取所得出结果的正确率和执行时间都比采用单基因进行编码的GA算法和GA-SA算法好,具有一定的应用价值。 相似文献
12.
13.
介绍了3种用于文本聚类的特征选择方法:文档频度、单词权、单词熵.用一个中文文本语料库对这3种特征选择方法进行了比较实验,实验结果表明在文本聚类中单词权的特征选择方法具有最好的选择结果. 相似文献
14.
为了解决短文本因特征关键词稀疏而导致文本向量概念表达不够准确的问题,本文提出概念属性扩展特征关键词短文本聚类算法——STCBCFE(Short Text Clustering Based on Concept Feature Ex-pansion)。该算法通过HowNet的概念属性扩展特征关键词,以此增加文本语义特征和反映文本主题的特征关键词数量,进而提高短文本相似性;将其应用于短文本聚类,能够提高短文本的聚类效果。实验结果表明,该算法在短文本聚类的查准率和查全率上都得到了较大的提高。 相似文献
15.
基于贝叶斯粗糙集的文本特征选择方法 总被引:3,自引:1,他引:2
特征选择是文本分类的一个核心研究课题.首先给出了一个基于最小词频的文档频,然后简单分析了经典粗糙集和变精度粗糙集的不足,紧接着把贝叶斯粗糙集引入进来并提出了一个属性约简算法,最后把该属性约简算法同基于最小词频的文档频结合起来,提出了一个综合的特征选择方法.该综合方法首先利用基于最小词频的文档频提取初始特征,然后利用所提属性约简算法消除冗余,从而获得较具代表性的特征子集.实验结果表明,该算法是有效的. 相似文献
16.
针对肌电信号特征维数高、运算效率低等问题,提出了一种基于ReliefF算法与遗传算法(GA)相结合的肌电信号特征选择方法.分析了肌电信号的特征,运用小波分析对肌电信号进行特征提取,采用ReliefF算法评估所提取的高维特征信号的权值,以选出对分类效果影响显著(权值较大)的特征子集,采用GA进一步筛选出分类效果最佳的特征子集,并对比分析了基于ReliefFGA-Wrapper算法与全局搜索算法对肌电信号处理的时间和分类效果.结果表明,所提出的方法能够提高运算效率并具有很好的分类效果. 相似文献
17.
杨丽玲 《吉林师范大学学报(自然科学版)》2014,(4):133-135
文中介绍了使用核覆盖算法进行中文文本分类.研究了采取不同的特征选取方法、利用核覆盖算法进行文本分类的区别.通过实验,除互信息外的其它几种特征选取方法在核覆盖算法分类过程中均取得了较优的实验结果,可看出核覆盖算法在文本分类中是一个不错的方法. 相似文献
18.
针对短篇幅文本数据稀疏的特性,提出了一种利用外部语料库知识提高短篇幅文本分割准确率的方法.该方法分2个步骤完成:①利用Gibbs采样方法估计语料库对应的潜在狄利克雷分配(LDA)模型,并利用该模型推断目标文本的潜在语义结构信息;②通过定义语义段落内凝聚性和语义段落间发散性2个目标函数,将文本分割问题转化为多目标优化问题.采用一种针对文本分割的并行遗传算法,获得全局最优解.通过实验,在文本数据稀疏的情况下,该算法在准确率方面优于多元判别分析(MDA)方法和基于LDA的文本分割方法,对于提高文本分割的准确率是可行和有效的. 相似文献
19.
提出了一种由遗传算法和改进互信息公式相结合的特征选择方法.将遗传算法中的特征评价函数换为改进互信息公式来对特征进行选择,结合了过滤式和封装式这2种特征选择方法的优点.实验部分采用另外2种特征选择算法与本文所提方法分别进行特征选择,将这3种方法所得到的特征子集用于概率神经网络、BP神经网络分类器上,通过比较对应的分类精度,检验各种特征选择方法的效果. 实验结果显示,所提出的特征选择方法能更为有效的实现特征选择,所取得的特征子集具有更好的泛化特性. 相似文献