共查询到20条相似文献,搜索用时 62 毫秒
1.
提出一种基于卷积神经网络(Convolution Neural Network,CNN)的高分辨率雷达目标识别方法.首先针对小样本应用于深度CNN时训练过程中损失函数值收敛速度慢的问题,利用结合批归一化算法的改进CNN网络对高分辨距离像(High Resolution Range Profile,HRRP)进行自动特征提取;再利用支持向量机(Support Vector Machine,SVM)对距离像特征进行分类.使用军事车辆高保真电磁仿真数据对提出的方法进行验证,识别结果证明了该方法的有效性. 相似文献
2.
以交通标志识别为研究目的,提出一种基于集成卷积神经网络的交通标志识别算法,通过对多个不同结构的卷积神经网络进行集成以提高算法识别率。为了缩短网络训练和测试时间以及提高网络识别率,对单个卷积神经网络的结构进行了优化。使用ReLU(rectified linear unit)激活函数来代替传统的激活函数,使用批量归一化(batch normalization,BN) 方法对卷积层输出数据进行归一化处理,将卷积神经网络的分类器用支持向量机(support vector machine,SVM)代替。使用德国交通标志识别数据库(german traffic sign recognition benchmark,GTSRB)进行训练和测试,实验结果表明,提出的算法识别率为98.29%,单幅交通标志图像测试时间为1.32 ms,对交通标志具有良好的识别性能。 相似文献
3.
深度学习已成功地应用于合成孔径雷达(synthetic aperture radar,SAR)图像的解释中,并取得了最新的成果.然而,目前的深度学习算法受SAR图像斑点噪声和俯仰角变化较大的影响,解释精度不佳.本文提出一种基于胶囊神经网络的SAR图像目标识别方法.该方法首先对MSTAR数据集使用灰度化和双线性插值的中心... 相似文献
4.
针对合成孔径雷达(synthetic aperture radar,SAR)图像的目标分类,传统的卷积神经网络(convolutional neural network,CNN)需要大量的数据样本进行训练,无法在小样本条件下进行,其应用受到限制。提出将胶囊神经网络(capsule network,Capsnet)算法用于SAR雷达图像的分类,针对小样本SAR数据集对Capsnet结构进行轻量化设计,并在MSTAR数据集上验证了该算法的有效性。结果表明,与CNN相比,基于Capsnet的SAR目标分类抗过拟合性强,泛化效果较好,具有更高的准确性,能够很好地实现SAR图像样本的分类。 相似文献
5.
《山西大同大学学报(自然科学版)》2019,(2)
针对现有的图像大数据识别方法具有收敛速度慢和识别精度低的问题,提出了一种基于卷积神经网络的图像大数据识别方法。首先,对传统的卷积网络结合改进的软最大化分类器进行分析,设计了卷积-软最大化分类器模型;对该模型中的卷积层、池化层、全连接层以及分类层均进行了描述。为了验证所提方法的优越性,在MNIST数据集上进行仿真,结果表明:与其它类似算法相比,所提的方法具有更低的误识率,在更短的时间内,能达到更低的分类均方误差。 相似文献
6.
为解决岩石物理相识别问题,提出了一种基于可解释一维卷积神经网络的识别方法.该方法通过引入全局平均池化层,突出了测井曲线波形的动态变化部分;并且通过分类激活映射增强了方法的可解释性;通过引入扩张卷积和批量归一化,弥补了由全局平均池化层引起的性能下降.实验结果表明,测试集中4种岩石物理相的平均F1分数为0.97,相比其他同... 相似文献
7.
现有低分辨雷达目标识别通常采用先特征提取、再进行目标分类的两步识别算法,存在识别率难以提高和方法泛化性不足的问题,因此提出了一种基于卷积神经网络(CNN)的低分辨雷达目标一步识别算法。该算法直接将采样数据作为输入,利用设计的一维CNN,通过卷积池化等操作自动获取数据深层本质特征,无需特征提取,实现对目标的一步识别。仿真实验结果表明:基于CNN的低分辨雷达目标一步识别方法的识别率较传统基于提取特征的两步识别方法提高了10.31%,识别时间较传统两步识别方法减少了0.142 s,充分证明了一步识别方法的有效性,为低分辨雷达目标识别问题提供了新的解决途径。 相似文献
8.
《华中科技大学学报(自然科学版)》2017,(10):7-11
基于深度学习方法,运用Faster R-CNN目标检测架构和ZFNet卷积神经网络,针对微装配系统目标的特点对网络进行训练,在此基础上设计了一个网络对识别目标进行姿态检测.实验结果表明:采用深度学习方法可以有效地对部分遮挡的目标进行识别并检测其姿态,相比于传统方法,该方法对环境适应性更强且速度更快,具有实际应用价值. 相似文献
9.
在公共安全检查领域中,研究毫米波图像目标检测的快速性和精准性的方法具有非常重要的实际应用价值。提出了基于Faster R-CNN深度学习的方法检测隐藏在人体上的危险物品。该方法将区域建议网络(region proposal network,RPN)和VGG16训练卷积神经网络模型相结合,接着通过在线难例挖掘(online hard example mining,OHEM)技术优化训练所提出的网络模型,从而构建了面向毫米波图像目标检测的深度卷积神经网络。实验结果证明所提的方法能高效地检测毫米波图像中的危险物品,并且目标检测的平均精度高达约94.66%,检测速度约为6帧/s,同时对毫米波安检系统的智能化发展有着极其重要的参考价值。 相似文献
10.
11.
针对目标识别需求,对基于神经网络的深度学习方法展开研究。由于深度学习模型中包含了对数据的先验假设,因此人工设计神经网络需要领域内专家丰富的先验知识,且具有劳动密集与时间成本高的缺点。为了获得超越专家个人经验、表现更好的网络,采用一种可微神经结构搜索的高效结构搜索方法,将搜索空间放宽为连续的空间,然后通过梯度下降来优化体系结构的验证集性能,从而找到面向目标识别的最优神经网络结构。仿真实验结果表明,将基于神经网络结构搜索的目标识别方法应用于"低慢小"类目标识别是可行的。 相似文献
12.
为实现笔画的分组和识别,现有的草图识别算法通常会采用限制用户的绘图习惯来达到目的.该文提出了利用贝叶斯网络和卷积神经网络(CNN)的草图识别方法解决此问题.首先,使用高斯低通滤波器处理输入草图,得到更平滑的图像.然后将连续输入的笔划分为两部分,分别使用贝叶斯网络和卷积神经网络对分割后的笔画进行识别,当笔画的可靠性大于阈值时,以贝叶斯网络的识别结果为准,反之采用CNN的识别结果.实验结果表明,该文算法在电路符号绘制过程中的识别率和绘制完成后的识别率均取得了较好的结果.该文算法具有良好的应用前景. 相似文献
13.
针对合成孔径雷达图像中舰船目标检测困难的问题,提出了一种基于深层次特征增强网络的多尺度目标检测框架.利用Darknet53提取原始图像特征,自上而下建立四尺度特征金字塔;特别设计基于注意力机制的特征融合结构,自下而上衔接相邻特征层,构建增强型特征金字塔;利用候选区域及其周边上下文信息为检测器计算分类置信度和目标分数提供更高质量的判定依据.所提算法在SSDD公开数据集和SAR-Ship自建数据集上的平均检测精度分别为94.43%和91.92%.实验结果表明,该算法设定合理且检测性能优越. 相似文献
14.
当前的图像特征识别大多采用的是传统的机器学习方法与卷积神经网络方法。传统的机器学习对图像识别的研究,特征提取多是通过人工完成,泛化能力不够强。最早的卷积神经网络也存在诸多缺陷,如硬件要求高,需要的训练样本量大,训练时间长。针对以上问题,提出了一种改进的神经网络模型,在LeNet-5模型的基础上并在保证识别率的情况下,简化网络结构,提高训练速度。将改进的网络结构在MINIST字符库上进行识别实验,分析网络结构在不同参量中的识别能力,并与传统算法进行对比分析。结果表明提出的改进结构在当前识别正确率上,明显高于传统的识别算法,为当前的图像识别提供新的参考。 相似文献
15.
针对合成孔径雷达图像目标检测困难以及深度学习中锚框机制所引起的计算冗余和应用场景受限问题,提出了一种基于无锚框机制的中心点、尺度和旋转角度预测网络,将目标检测转化为中心点估计问题,并直接预测相应边框的宽度、高度以及旋转角度等要素,实现多场景、多类型目标定向检测.该算法利用ResNet 101的U型结构和注意力模块提取图... 相似文献
16.
研究了粗集和神经网络方法在信息融合目标识别中的应用,提出将神经网络学习机制引入到粗集系统,同时通过粗集的条件和决策属性构造神经网络结构,并针对三种不同谱段下的三种不同目标图像进行了实验,试验表明,粗集神经网络相结合的识别算法的识别率要明显高于单独使用一种融合算法的识别率,训练时间也大大缩短。 相似文献
17.
《平顶山学院学报》2019,(2):53-58
针对传统神经网络在人脸图像的训练过程中没有将高低卷积层信息进行融合,为充分利用图像各层特征信息,提出一种基于三层特征融合的全连接卷积神经网络模型,算法将原有网络最后三层特征结合,并将提取的特征信息与最后一层全连接层结合,从而增加了浅层特征的表达,加强了深层特征的提取效果,促使改进后的卷积神经网络提取的信息更加完备;同时将损失函数和中心函数加权联合,以提高人脸图像的识别率和区分性.在CASIA-webface人脸数据库进行的实验结果表明,改进后的网络模型识别率达到98. 7%,优于DCNN等算法,并将训练好的网络模型应用到YALE、PERET、LFW-A等人脸库上,相比其他方法识别率都有所提升. 相似文献
18.
针对传统卷积神经网络对远距离视频目标识别效果差的原因,本文提出一种改进的基于SSD卷积网络的视频目标检测模型.首先,对数据集进行剪裁,旋转等预处理,提高网络检测泛化能力,其次,采用coco数据集Mobilenet_SSD预训练模型,由于其具有轻量级网络模型特点,减少计算开销,减少内存占用量.然后,再结合voc2012数据集进行二次训练微调处理,加快训练收敛速度,使用自定义数据集能有效检测特定场景目标,能够有效识别远距离场景下视频目标物体.实验结果表明,改进的网络检测模型适用于远距离目标检测,减少计算量,降低硬件内存资源消耗,提高网络模型性能和检测精确度,具有较好的鲁棒性. 相似文献
19.
提出了一种基于多DSP混合结构的Gabor小波神经网络图像目标识别新方法.利用TMS320C5409设计了多DSP混合结构系统,根据并-串结构系统的特点,设计了Gabor小波神经网络算法.算法被分成不同的并-串结构进行运算,利用串行的DSP-1进行Gabor小波变换提取图像目标的特征向量,并输入到采用不同网络结构的并行多DSP进行BP网络运算,串行的DSP6对BP网络输出的后验概率进行加权平均,给出分类结果.对9种飞机目标进行了分类识别仿真实验.实验结果表明,该方法应用于多目标识别时,识别时间为2.8 ms,识别率达到98%. 相似文献