首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel PEO-based composite polymer electrolyte by using organic-inorganic hybrid EO20PO70EO20-em-mesoporous silica (P123-em-SBA15) as the filler has been developed. The experiment results show that P123-em-SBA15 can enhance the lithium-ion transference number of the composite polymer electrolyte, which is induced by the special topology structure of P123 in PI23-em-SBAI5 hybrid. In addition, room temperature ionic conductivity of the composite polymer electrolyte can also be increased by about two orders of magnitude. The excellent lithium transport properties suggest that PEO-LiCIO4-P123-em-SBA15 composite polymer electrolyte can be used as electrolyte materials for all solid-state rechargeable lithium polymer batteries.  相似文献   

2.
综述了近年来国内外在锂离子电池复合型固态聚合物电解质和复合型凝胶聚合物电解质材料的研究进展。  相似文献   

3.
掺杂聚合物电解质膜性能   总被引:1,自引:0,他引:1  
以型号为Kynar2801的PVDF-HFP(偏氟乙烯-六氟丙稀共聚物)为基质,制备了掺杂微米TiO2粉体的聚合物锂离子电池用多孔电解质隔膜,并采用SEM、XRD、交流阻抗法以及充放电测试等测试手段研究分析该电解质膜的物理及电化学性能. 实验结果表明:掺入质量分数6.5%的微米TiO2聚合物电解质膜的室温离子电导率为1.66×10-3S·cm-1,拉伸强度为2.78MPa;在以掺杂电解质膜为隔膜的锂离子电池中,分别以28,70,140,280mA·g-1的电流密度放电时,正极材料LiCoO2的放电容量分别为140.6,127.48,120.25,99.17mAh·g-1.  相似文献   

4.
A novel composite microporous polymer electrolyte composed of poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) and mesoporous SBA-15 was prepared. The composite solid polymer electrolyte (CSPE) exhibits ionic conductivity as high as 0.30 mS·cm^-1 with a composition of SBA-15 : PVdF-HFP=3 : 8 at room temperature. Infrared transmission spectroscopic results suggested that the mechanism of micropore formation is similar to that of the phase inversion. X-ray diffraction (XRD) results demonstrated that the addition of SBA-15 inhibits the crystallization of PVdF-HFP, while the SBA-15 preserves well its ordered mesoporous structure during the course of preparation. The Li/CSPE/MCF of half-cell was assembled, and it showed a good electrochemical and cyclability performance during charge-discharge cycles.  相似文献   

5.
A new guanidinium-based ionic liquid (IL) was investigated as a novel electrolyte for a lithium rechargeable battery. The viscosity, conductivity, lithium redox behavior, and charge-discharge characteristics of the lithium rechargeable batteries were investigated for the IL electrolyte with 0.3 mol kg−1 lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt. Li/LiFePO4 cells incorporating the IL electrolyte without additives showed good cycle properties at a charge-discharge current rate of 0.1 C, and exhibited good rate capabilities in the presence of a mass fraction of 10% vinylene carbonate or gamma-butyrolactone.  相似文献   

6.
为了改善PVA-KOH-H2O体系碱性固体聚合物电解质(ASPE)的性能,采用溶液浇铸法向其中添加改性剂制备复合电解质膜,利用X射线衍射仪(XRD)、循环伏安法(CV)和交流阻抗法(AC)等对电解质膜的物相和性能进行了表征.研究结果表明:聚合物电解质以无定形态为主,含极少量晶相,改性剂的适量添加可以降低电解质膜的结晶度增大无定形区域,离子电导率随PEO的加入先减小后增大,随增塑剂的加入先增大后减小,三种改性剂中GROL效果最好可达4.52×10-2 S/cm,电化学稳定窗口随改性剂的添加略微变窄,但仍显示了较好的电化学稳定性,当三种物质同时共混加入时电化学性能优于单个组分.该研究结论对制备高能量碱性固体电池具有一定的参考价值.  相似文献   

7.
采用Bellcore制膜法制备了锂离子电池用PVDF-HFP共聚物型多孔聚合物隔膜;研究了增塑剂DBP对该聚合物膜的离子电导率、电化学稳定窗口的影响.研究表明,随增塑剂含量增大,离子电导率不断提高,在增塑剂与溶剂体积比大于等于20%时,离子电导率可达10-3S.cm-1;在增塑剂与溶剂体积比为10%~30%时,该聚合物膜的电化学稳定窗口在4.3 V以上,均能满足锂离子电池的要求,并且随增塑剂含量的增大,电化学稳定窗口先增大后减小,在比值为20%时达到最大,为5.3 V左右.  相似文献   

8.
Based on density functional theory (DFT) of the first-principle for the cathode materials of lithium ion battery, the electronic structures of Li(Fe1-x)PO4 (Me = Ag/Mn, x = 0-0.40) are calculated by plane wave pseudo-potential method using Cambridge serial total energy package (CASTEP) program. The calculated results show that the Fermi level of mixed atoms Fe1-xAgx moves into its conduction bands (CBs) due to the Ag doping. The Li(Fe1-xAgx)PO4 system displays the periodic direct semiconductor characteristic with the increase of Ag-doped concentration. However, for Fe1-xMnx mixed atoms, the Fermi level is pined at the bottom of conduction bands (CBs), which is ascribed to the interaction between Mn(3d) electrons and Fe(4s) electrons. The intensity of the partial density of states (PDOS) near the bottom of CBs becomes stronger with the increase of Mn-doped concentration. The Fermi energy of the Li(Fe1-xMnx)PO4 reaches maximum at x = 0.25, which is consistent with the experimental value of x = 0.20. The whole conduction property of Mn-doped LiFePO4 is superior to that of Ag-doped LiFePO4 cathode material, but the structural stability is reverse.  相似文献   

9.
The synthesis process of LiCo0.3Ni0.7O2 was investigated by FT-IR, mass spectroscopy, elemental analysis, SEM, BET, TG/DTA and XRD in this paper. The results revealed that lithium and transition metal ions were trapped homogeneously on an atomic scale throughout the precursor. Li2CO3, NiO and CoO are the intermediate products obtained after decomposition of the precursor and Li2CO3 undergoes direct reactions with NiO and CoO to form LiCo0.3Ni0.7O2. Moreover, the kinetics of formation of LiCo0.3Ni0.7O2 by dtrate sol-gel method is faster than the case of the conventional solid-state reaction between lithium carbonate and corresponding reactants. The single phase of LiCo0.3Ni0.7O2 was synthesized at temperature as low as 550℃. The discharge capacity of LiCo0.3Ni0.7O2 increases from 127 to 185 mAh/g as the caldnation temperature increasing from 550 to 750℃. After 100 cycles, the discharge capacity of the sample calcined at 750℃ is 155 mAh/g. The electrochemical study shows that the LiCo0.3Ni0.7O2 has high discharge capacity and good cycling behavior for lithium ion batteries.  相似文献   

10.
Fe3O4@SiO2 core–shell composite nanoparticles were successfully prepared by a one-pot process. Tetraethyl-orthosilicate was used as a surfactant to synthesize Fe3O4@SiO2 core–shell structures from prepared Fe3O4 nanoparticles. The properties of the Fe3O4 and Fe3O4@SiO2 composite nanoparticles were studied by X-ray diffraction, transmission electron microscopy, energy dispersive spectroscopy, and Fourier transform infrared spectroscopy. The prepared Fe3O4 particles were approximately 12 nm in size, and the thickness of the SiO2 coating was approximately 4 nm. The magnetic properties were studied by vibrating sample magnetometry. The results show that the maximum saturation magnetization of the Fe3O4@SiO2 powder (34.85 A·m2·kg–1) was markedly lower than that of the Fe3O4 powder (79.55 A·m2·kg–1), which demonstrates that Fe3O4 was successfully wrapped by SiO2. The Fe3O4@SiO2 composite nanoparticles have broad prospects in biomedical applications; thus, our next study will apply them in magnetic resonance imaging.  相似文献   

11.
Eu^2 -aetivated strontium choloro-phosphate has been used for lamp phosphor traditionally with high efficiency. In this paper, the cathodoluminescent properties of Sr5(PO4)3Cl:Eu^2 have been investigated for application in field emission display. The influence of Ba^2 , Ca^2 impurities on the cathodoluminescent spectrum of Sr5(PO4)3Cl:Eu^2 has also been measured. When operate voltage varied from mid- to low-voltage, the relative brightness and saturation behavior of phosphor was observed at different current density.  相似文献   

12.
One of the most important factors that limits the use of LiFePO 4 as cathode material for lithium ion batteries is its low electronic conductivity.In order to solve this problem,LiFePO 4 in situ vapor-grown carbon fiber (VGCF) composite cathode material has been prepared in a single step through microwave pyrolysis chemical vapor deposition.The phase,microstructure,and electrochemical performance of the composites were investigated.Compared with the cathodes without in situ VGCF,the initial discharge capacity of the composite electrode increases from 109 to 144 mA h g-1 at a 0.5-C rate,and the total electric resistance decreases from 538 to 66.The possible reasons for these effects are proposed.  相似文献   

13.
Low temperature performance of LiFePO4/C cathode was remarkably improved by slight Mn-substitution. Electrochemical measurements showed that about 95% of the discharge capacity of LiFe0.98Mn0.02PO4/C cathode at 20°C was obtained at 0°C, compared to 85% of that of LiFePO4/C cathode. The LiFe0.98Mn0.02PO4/C sample also presented enhanced rate performance at −20°C with the discharge capacities of 124.4 mA h/g (0.1C), 99.8 mA h/g (1C), 80.7mAh/g (2C) and 70 mA h/g (5C), respectively, while pristine LiFePO4/C only delivered capacities of 120.5 mA h/g (0.1C), 90.7 mA h/g (1C), 70.4 mA h/g (2C) and 52.2 mA h/g (5C). Cyclic voltammetry measurements demonstrated an obvious improvement of the lithium insertion-extraction process of the LiFePO4/C cathode by slight Mn-substitution. The results of FSEM observation and electrical conductivity measurement indicated that slight Mn-substitution minimized the particle size of LiFe0.98Mn0.02PO4/C and also obviously improved the electrical conductivity of the compound, thus obviously enhances the interface reaction process on the cathode.  相似文献   

14.
Phenylalanine-58 is one of the conservative residues in the hydrophobic pocket of Cyt bs, which forms aromatic stacking with the heme b. Previous study showed that both the stacking and the property of the aromatic residue affect hydrophobicity of the heme pocket, leading to change of protein‘s property. In order to further reveal the essence we esterify the heme propionate of Cyt bs, F58Y and F58W, and eliminate the hydrogen bond between heme propionate and Ser64 in examining the effect of hydrogen net on the π-π interaction. In this paper thermal denaturation of DME-Cyt b5 and its F58Y and F58W mutants has been studied by UV-visible and CD spectra. The heme transfer reactions between these proteins and apo-myoglobin have been studied as well. The results demonstrate that esterification did not destroy the aromatic stacking; however, it affects the stability of the proteins due to different volumes, hydropho-bicities and hydrogen bonds forming ability of these substituents.  相似文献   

15.
The optimizations geometries and interaction energy corrected by BSSE of the complexes between C4H4Y (Y=O, S) and CHiLi have been calculated at the B3LYP/6-311++G^** and MP2/6-311++G^** levels. Three complexes were obtained. Abnormally, the calculations showed that all the C10--Li14 bond lengths increased obviously but the blue-shift of C10-Li14 stretching frequency occurred after formed complexes. The calculated binding energy with basis set super-position error (BSSE) and zero-point vibrational energy corrections of complexes I-III is -45.757, -35.700 and -39.107 kJ·mol^-1, respectively. The analyses on the combining interaction with the atom-in-molecules theory (AIM) also showed that a relatively strong lithium bond interaction presented in furan homologues C4H4Y-LiCH3 systems. Natural bond orbital theory (NBO) analysis has been performed, and the results revealed that the complex I is formed with n-σ type lithium bond interaction between C4H40 and LiCH3, complex II is formed with TT-s type lithium bond interaction between C4H4O and LiCH3, and complex III is formed with TT-s and n-s type lithium bond interactions between C4H4S and LiCH3, respectively.  相似文献   

16.
室温全固态氢传感器研究   总被引:2,自引:0,他引:2  
以Sb2O5-H2O-H3PO4 复合氧化物为固态电解质 ,利用混合压膜和蒸发的方法制作传感催化电极和参考电极 ,研制了室温全固态电解质氢气传感器。传感器的组成为:空气 ,Pd(或Ag) |Sb2O5-H2O-H3PO4 |Pd ,H2 (在N2 或空气中) ,考察了传感器的电位响应值与氢气体积分数之间的关系 ,以及温度对氢气传感性能的影响;通过测绘极化曲线来研究其应答机理,从而分析传感器电位响应值不同于能斯特值的原因——敏感电极上混合电势的形成。  相似文献   

17.
To understand effect of π-stacking interactions between the side chain of aromatic amino acids and the porphyrin ring on structures and properties in cytochrome b5 (cyt b5), the Phe58 residue was mutated to tyrosine and tryptophan, respectively by site-directed mutagenesis. The denaturation of cyt b5 F58W and F58Y toward guanidine hydrochloride was examined by UV-visible and fluorescence spectroscopy. The kinetics of heme transfer reactions between apo-myoglobin and the mutants were studied. The results indicated that the mutation of F58 residue for Y58 or W58 reduced the interaction between of peptide and the heme group, resulting in decrease of the T m and C m values of the proteins, increase of the heme transfer reaction rate, and shifts of the redox potential.  相似文献   

18.
A copper-doped silica composite aerogel with high specific surface area was prepared using a sol-gel method at ambient pressure. A drying control chemical additive (DCCA) N,N-dimethylformamide (DMF) was introduced to the composite sol of tetraethyl orthosilicate (TEOS) and copper nitrate (Cu(NO3)2·3H2O) during the synthesizing process. The influence of the preparation conditions including Cu loading, catalyst concentration and heat treatment on the structure of copper-doped silica was investigated. The results showed that the obtained aerogel particles were uniformly distributed. The pore diameter was in a range of 2 to 15 nm. Heavier Cu loading benefited the formation of CuO crystalline, and reduced the specific surface area and pore diameter. When the catalyst concentration was high, the aggregation of Si-O network was reduced with the increase of it. The composite aerogel exhibited a good thermal stability after the heat treatment at high temperature.  相似文献   

19.
Two modes of photosynthesis predominate in terres-REPORTS trial plants: the C3 and C4 modes[1]. The C3 mode is used by all of trees, bushes, and cold season grasses. The C4 mode is used by the most of tropical and warm season grasses. They are disadvantaged relative to C3 plants at high CO2/O2 ratios because of the additional energy ex-pense needed to concentrate CO2 in the bundle-sheath cells. At low CO2/O2, however, C4 plants can achieve a relatively high quantum yield by suppressin…  相似文献   

20.
Using the eddy covariance method, from 1 July 2003 to 30 June 2004, we conducted the observation and analysis of ecosystem CO2 flux in 3 types of alpine meadow vegetation (Kobresia humilis, Potentilla fruticosa shrub and Kobresia tibetica swamp meadows) on the Qinghai-Tibetan Plateau. The results show that the Kobresia humilis meadow, the shrub meadow and the swamp meadow's highest CO2 uptake rates are 16.78, 10.42 and 16.57 μmol·m^-2·-s^-1 respectively, while their highest CO2 release rates are 8.22, 7.73 and 18.67μmol·m^-2·-s^-1 respectively. The Kobresia humilis meadow and shrub meadow's annual atmospheric uptakes are 282 g CO2/m^2 and 53 g CO2/m^2, respectively, while swamp meadow's annual atmospheric release is 478 g CO2/m^2. This proves that the Kobresia humilis meadow and the shrub meadow on the Qinghai-Tibetan Plateau have relatively low potential for CO2 uptake and release compared to C4 grasslands, a number of lowland grasslands, and forests. Moreover, swamp meadow has relatively high release potential. This, in turn, reveals clear differences in carbon source/sink between different types of vegetation in the Qinghai-Tibetan Plateau alpine meadow ecosystem. These differences are mainly brought by differences in the vegetations' photosynthetic capacity and soil respiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号