首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
设X是维数不小于2的实Banach空间,分别记X的单位球面和单位球为SX={x∈X:‖x‖=1}和BX={x∈X:‖x‖≤1}.对于每个α∈(0,1),X的广义凸性模δ(α)(ε):[0, 2]→[0, 1] 定义如下:δ(α)(ε)=inf{1-‖α x (1-α)y‖:x,y∈SX,‖x-y‖≥ε}. 上述定义中的"SX"和""可以分别替换为"BX"和"=", 详细的证明见文献[1].  相似文献   

2.
1 问题的提出与二元反函数的概念对称性是高等数学中很重要的性质,某曲面关于平面对称的曲面尚未看到有关的论述。在一元函数中,y=f(x)的反函数y=f~(-1)(x)的图形与y=f(x)的图形关于直线y=x对称。而对于二元函数尚没有反函数的定义,因为二元函数不能按一元函数定义反函数那种方式来定义反函数。受一元函数与其反函数的图形之间关系的启发,同时也为以后研究某曲面关于平面对称的曲面时方便,我们不妨定义二元反函数如下。  相似文献   

3.
一、问题的提出 目前,求复合函数的反函数问题虽未列入高中和大学数学教材,但师生在教与学过程中思考此类问题却是顺理成章的。曾有学生提出诸如:“(1)已知f(x)=2x+1,求f(x-1)的反函数;(2)已知f(x/3);(2x+3)/X,求f(x/3)的反函数。”等问题。他们的解答是: 问题(1) 解:令y=2x+1,得x=(y-1)/2,∴f~(-1)(x)=  相似文献   

4.
设 k 为某一自然数,数列{x}、{y}当n>k 时满足y_n=C_0x_n+C_1x_(n-1)+…+C(?),则称{y_n}为{x_n}的相关数列.设 g_1(t),g_2(t),…,g(t)在 u(t_0)内严格单调且连续,g(t_0)=x_0,i=1,2,…,k.g_i(t)的反函数为 g~(-1)(x),它在 u(x_0)内严格单调且连续,g~(-1)(x_0)=t_0,i=1,2,…,k设F(t)=C_1f〔g_1(t)〕+C_2f〔g_2(t)〕+…+Cf〔g(t)〕,且存在 l,1≤l≤k,使|C_1|>(?)|C_i|.  相似文献   

5.
设 F是分布函数 ,对 α∈ (0 ,1 ) ,记 X+F (α) =sup{ x:F(x) <α} ,X-F (α) =inf{ x:F(x) >α} ,XF(α) =(X+F (α) +X-F (α) ) /2 .本文给出了分布函数 F和 G之间的一种散布序 ,记作 d≤ ,F d≤ G 0 <α<β<1 ,XF(β) - XF(α)≤ XG(β) - XG(α) .在一定的条件下 ,讨论了几种散布序 d≤ ,disp≤ ,d*≤ 的等价关系  相似文献   

6.
设 F 为任意特征不为2的域,f(x)=αx~2-βx+r 是 F 上二次多项式。令 F=Fu{∞},並令 f(∞)=α。对任意 a∈F,我们定义了变换τ_a:■变换τ_a 保持“f(x)为平方”这性质不变.利用这组变换,(1)当 F 为有限域,我们确定了集合 H={x∈F|f(x)∈F~(*2)}及 S={f(x)∈F~(*2)|x∈F},並计算了它们元素的个数;(2)当 F 为有理数域,我们讨论了整系数二元二次型 f(x,y)取平方值问题.考虑方程 f(x,y)=z~2。如它有一整数解,则必有无限多不等价的解,所有的解都可通过变换τ_a 简单地得到:(3)当 F 为实数域,我们得到一族条件不等式.  相似文献   

7.
设 G为 n阶 2连通无爪图,δ=min{d(x)|x∈V(G)},δ~*=min{max(d(x),d(y))|x.y∈V(G).d(x.y)=3},则(i)c(G)≥min{n.2δ~*+4};(ii)当 δ~*≥(1/2)(n-δ-2)时 G是哈密顿图。  相似文献   

8.
一类Hilbert型奇异积分算子的范数及其应用   总被引:1,自引:0,他引:1  
设ω=x(p-1)(λ-1)+(a-b)p,ω1=x1-λ+(a-b)p,定义Hilbert型奇异积分算子Tλ:(Tf)(y)=∫0+∞max{f(xxλ),yλ}dx y∈(0,+∞)证明了Tλ是Lωp1(0,+∞)到Lωp(0,+∞)的有界线性算子,并得到了Tλ的范数表达式.  相似文献   

9.
设 F 为任意特征不为2的域,f(x)=αx~2-βx+r 是 F 上二次多项式。令=F∪{∞},并令 f(∞)=α。对任意 a∈?),我们定义了变换τ_a∶.变换τ_a 保持“f(x)为平方”这性质不变.利用这组变换,(1)当 F 为有限域,我们确定了集合 H={x∈F|f(x)∈F~(*2)}及 S={f(x)∈F~(*2)|x∈F},并计算了它们元素的个数;(2)当 F 为有理数域,我们讨论了整系数二元二次型 f(x,y)取平方值问题.考虑方程 f(x,y)=z~2.如它有一整数解,则必有无限多不等价的解,所有的解都可通过变换τ_a 简单地得到:(3)当 F 为实数域,我们得到一族条件不等式.  相似文献   

10.
设 X 为复的 Banach 空间,L(X)为 X 上的有界线性算子构成的 Banach 代数,F为L(X)到L(X)的线性算子.Matj(?)z Omladi(?)在[1]中证明了下面的定理.定理设 F:L(X)→L(X)是线性、双射且在弱算子拓扑下连续的映射,F 和 F~(-1)均保持一秩投影,则或者(1)存在一个有界的双射线性算子 U:X→X,使 F(A)=UAU~(-1),或者(2)存在一个有界的双射线性算子 U:X′→X,使 F(A)=UA′U~(-1),在此情形下 X 是自反的.下面给出此定理的一个简单证明,并对其条件进行改善,推广该定理.本文中 X、Y 表示 Banach 空间,X′、Y′分别表示它们的对偶空间,任意 x∈X,f∈X′,x(?)f 表示如下定义的 X 上的一秩算子,任意 y∈x,(x(?)f)(3y)=f(y)x.以下两个引理均设 F 为 L(X)到 L(Y)的保持一秩投影的线性映射,且 F 限制在 L(X)中的一秩算子组成的集合上为单射.引理1 若 x、y∈X 为线性无关向量,f∈X′为非零函数且 f(x)=f(y)=1,则存在 u、  相似文献   

11.
~~的核 Sk( x,y)附加了对称性的要求 .本研究在文 [3]的基础上 ,利用最近 Y.S.Han在文 [2 ]给出的恒等逼近的改进定义给出了 Lipschitz函数类 Lipα的一个新刻画 ,是文 [3]结果的推广 ,其主要结果如下 .定理 设算子列 {Sk}k∈ z[2 ]是齐型空间 ( X,ρ,μ)上的恒等逼近 ,Dk=Sk- Sk-1,f是在任有界集上可积的函数 ,0 <α 相似文献   

12.
证明了若f:[a,b]→[a,b]为单调增加的连续函数,λ∈(0,1),定义Fλ:[a,b]→[a,b],Fλx=(1-λ)x+λf(x),x1∈[a,b],xn+1=Fλxn=Fλnx1,n≥1,则{xn}单调地收敛于f的1个不动点.  相似文献   

13.
亚纯函数及其导函数的特征函数   总被引:1,自引:0,他引:1  
证明了如下结果:设f(z)是开平面上的有穷级亚纯函数,满足,这里a(z)是开平面上的亚纯函数满足T(r,a(z))=o{T(r,f)},且对于一正整数,则对任意正整数g有.  相似文献   

14.
对独立同分布随机变量序列{Xn}的分布函数F(x)作了新的限制,使VonMises条件仍成为F(x)属于三大吸引场的充要条件  相似文献   

15.
谢瑞  高丽  赵琴 《河南科学》2011,29(9):1024-1026
在F.Smarandache函数S(n)及真因子序列{qd(n)}的基础上,构造并研究了∑n≤x(S(qd(n))-(1—2d(n)-1)p(n))2的一种均值性质,利用初等方法和素数定理证明了关于一个算术函数与最大素因子函数的混合均值问题,并给出了它的一个较强的渐进公式.  相似文献   

16.
本文借助于度量空间证明了:在R′上不存在收敛于无理数集的特征函数X(x)的连续函数序列{f_m(x)}.  相似文献   

17.
设{Xn, n≥1}为一同分布的m 宽象限相依(m-WOD)序列, fn(x),rn(x)分别为密度函数f(x)基于样本X1,X2,…,Xn的核估计和失效率函数核估计. 在适当的假设条件下, 利用m-WOD序列的矩不等式和Borel Cantell 引理, 证明核密度估计及失效率函数核估计的强相合性和一致强相合性.  相似文献   

18.
设{Xn, n≥1}为一同分布的m 宽象限相依(m-WOD)序列, fn(x),rn(x)分别为密度函数f(x)基于样本X1,X2,…,Xn的核估计和失效率函数核估计. 在适当的假设条件下, 利用m-WOD序列的矩不等式和Borel Cantell 引理, 证明核密度估计及失效率函数核估计的强相合性和一致强相合性.  相似文献   

19.
利用Mironenko的反射数理论,研究了三元多项式微分系统的反射函数为F(t,x)=(x1,x2,F3(t,x))T,(x=x1,x2,x3)T时,F3(t,x)的具体表达式,并讨论了该系统存在周期解的条件.  相似文献   

20.
关于平均值函数的极值问题   总被引:1,自引:0,他引:1  
本文主要讨论在〔a,b〕上的连续函数f(x)的平均值函数的极值问题。它可用于周期性经营项目最佳周期的确定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号