首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
为了进一步分析土工格室在土体中的加筋作用,以高强土工格室作为研究对象,采用室内3轴试验和颗粒流模拟的方法,研究土工格室加筋砂土的特性,并通过3维颗粒流分析程序(three dimension particle flow code, PFC~(3D))模拟加筋砂土在不同工况下的应力-应变特性、接触力分布情况、位移场分布规律等.结果表明,用PFC~(3D)能够较好地模拟加筋砂土的应力-应变特性;随着土工格室焊距的增大,加筋砂土模型的承载力也增大;土工格室的高度越高,加筋砂土的承载力越大;随着围压的升高加筋砂土的承载力也增大.最后,分析了在荷载作用下的加筋砂土的位移情况,得出在土工格室中间及其影响区域内土体颗粒在位移方向排列比较集中和整齐,且土体颗粒基本上沿着主应力方向,在土工格室影响区域外围向外扩散.  相似文献   

2.
高强土工格室采用新型U形钉节点, 材料抗拉强度为传统格室的10倍左右. 将土工格室置于地基, 形成土工格室结构层, 针对纯砂地基和不同格室焊距的土工格室加筋砂地基进行多组模型试验. 分析试验所得荷载-沉降曲线, 结果表明土工格室加筋能明显提高地基承载力,减少地基沉降. 在一定范围内, 格室焊距越小, 加筋效果越明显. 将Winkler弹性地基梁计算方法运用于高强土工格室加筋砂地基沉降计算中, 得出弹性地基梁的有限长梁解, 通过试验所得实测数据较为精确地确定了计算所需参数; 对比试验和计算结果, 给出了高强土工格室加筋砂地基结构层变形计算方法, 并且得出高强土工格室这一新型材料的相关计算参数.  相似文献   

3.
为了从细观上探究冲击荷载下加筋材料加固作用机制,通过离散元方法建立道砟颗粒模型,采用平行黏结模型建立土工格栅、土工格室柔性模型;通过对比室内道砟冲击试验和数值模拟结果,从宏观、细观上研究道砟竖向累积沉降和侧向变形,并对道砟应力链分布、颗粒接触和位移等进行细观分析。结果表明:在冲击高度为250 mm时,相较于未加筋道砟,土工格栅加筋道砟的竖向沉降和侧向变形分别减少24.4%和12.7%,土工格室加筋道砟分别减少33.5%和24.0%;由于道砟加固区存在垫层效应,土工格栅和土工格室加筋道砟的颗粒接触数分别增加9.3%和42.6%,平均接触力分别减少5.6%和16.7%;对比道砟颗粒平均位移,土工格栅和土工格室加筋工况相较于未加筋工况分别减少13.3%和21.1%,土工格室加固效果比土工格栅更为显著。  相似文献   

4.
针对路堤工程中车辆荷载直接作用于路面板,再经路堤填土传递作用于土工格室加筋垫层的荷载传递实际,并考虑路堤填土刚度、地基土的排水固结效应对土工格室加筋体受力变形的影响,将土工格室加筋体视为置于Kelvin地基上的下梁、路面板视为置于Winkler地基上的上梁,基于双层Euler梁理论,建立考虑路面板-路堤-土工格室加筋垫层-地基土相互作用的上下梁挠曲变形微分方程并求解.将本文解答所得格室加筋体内力位移与传统弹性地基梁法计算结果进行比较,两者吻合良好.在此基础上,分析了格室体刚度、路堤填土刚度、地基反力系数、地基土固结度等因素对路面板及格室体挠曲变形的影响.结果表明:路面板及格室加筋垫层的挠曲变形会随着格室体刚度的增大及地基反力系数的增大而减小,随地基土固结度的增大而增大;此外,路堤填土刚度增大会减小路面板的挠曲变形但会增大格室加筋垫层的挠曲变形.  相似文献   

5.
为研究土工格室加固高填路堤的稳定性,通过开展室内模型试验,分析了在持续荷载作用下素土边坡和土工格室加固高填路堤边坡的沉降量和最大水平位移;基于室内模型试验,建立有限元模型,分析了不同加固条件下的坡顶沉降量、最大水平位移及土工格室应变,研究了土工格室高度、铺设间距以及不同铺设部位对高填路堤稳定性的影响。结果表明:铺设土工格室能降低边坡土体的沉降量和最大水平位移,进而提高边坡的承载力;素土边坡剪应变自坡顶至坡脚形成贯通的滑移带,铺设土工格室后,滑移带的位置由边坡表层深入坡体内部,且滑移带未完全贯通;增加土工格室的高度,边坡的沉降量和最大水平位移先减小后趋于稳定,安全系数先增大后逐渐平缓;边坡的沉降量、最大水平位移随土工格室铺设间距的增大而增大;减小土工格室铺设间距0.6~0.7倍,最大水平位移降低1.5~2倍,坡顶沉降量减小1.5~1.8倍,安全系数增大1.1~1.3倍。高填土路堤的侧向位移主要发生在边坡底部H/3处,在边坡底部H/3处减小土工格室的铺设间距、增加土工格室的高度能更好约束侧向位移和沉降量,是提高路堤稳定性更为经济合理的加筋方案。  相似文献   

6.
确定土工格室加筋路基中筋材内部的应力性状是控制工程成本、有效发挥土工格室加筋作用的关键因素。首先通过室内试验确定高强土工格室材料的应力-应变关系并以此确定其本构模型,而后基于ABAQUS有限元软件,采用分离式分析法分别建立土工格室及路基的计算模型,对多层土工格室加筋路基进行有限元分析。通过添加土工格室前后情况对比,改变土工格室的加筋层数进行分析,研究不同铺设层数的土工格室对路基沉降及侧向位移的影响。通过分析多层土工格室加筋路基内部筋材的拉应力性状,提出一种改进的铺设方法,并建立了有限元模型进行验证。结果表明:添加土工格室能够有效限制路基沉降及侧向位移,使路基的整体稳定性得到提高,具体表现为铺设1层土工格室时,路基中线处的竖向位移可减小36.2%,坡脚处的水平位移可减小74.8%,且路基的稳定性与土工格室铺设层数呈正相关。土工格室筋材内部拉应力由路基中线向路基两侧呈逐渐减小的趋势,在路基边缘位置已趋于零。采用多层土工格室加筋时,最底层的土工格室和最上层的土工格室承受较大的拉应力。在此规律的基础上,采用改进的土工格室铺设方法,在最大节约30%筋材的前提下,可取得大致相同的加筋效果。  相似文献   

7.
土工格室的强度取决于条带强度和节点强度,同时条带生产工艺和节点连接方式对土工格室强度也有一定的影响。通过对拉伸型聚丙烯(Polypropylene,PP)土工格室条带和热熔焊接型节点进行室内单轴拉伸试验,研究试样形状(哑铃形、窄矩形、宽矩形)和试样宽度对PP土工格室条带强度及拉伸变形特性的影响,并比较不同受力状态下熔接节点的失效模式及强度大小。结果表明,3种形状试样的抗拉强度及伸长率从大到小均为宽矩形、哑铃形、窄矩形,试样宽度对PP土工格室条带拉伸性能的影响显著大于试样形状,熔接节点依托于PP条带下的拉伸力学性能表现良好,熔接节点在不同受力状态下的强度从大到小为剪切强度、对拉强度、剥离强度。试验结果可为土工格室的生产、应用以及加筋加固机理的研究提供参考和借鉴。  相似文献   

8.
为研究土工格室加筋砂土的界面作用特性,采用离散元程序(PFC3D)建立土工格室加筋砂土的拉拔试验数值模型,分析了拉拔过程中的筋土界面位移、格室节点受力及界面接触力和孔隙率等宏细观参数的变化规律,揭示了土工格室加筋砂土在拉拔过程中筋土界面作用的宏细观机理。结果表明:格室拉拔阻力主要由格室纵肋界面摩擦阻力及格室横肋的被动承载力组成,界面摩擦阻力在前期发挥主要作用,而横肋的被动承载力在后期发挥主要作用;筋土界面区域的土体接触力和局部孔隙率随拉拔位移发生疏密相间的变化,界面区域砂土发生脱空,同时局部土体产生剪胀作用,对应界面孔隙率增大;宏观上随着拉拔位移增加,颗粒挤密咬合能力增强,对应的细观参数(界面接触力和界面局部孔隙率)发生起伏变化,界面区域接触力增大从而使得拉拔阻力随格室拉拔位移的增大而增大。  相似文献   

9.
土工格室加筋效果的室内试验   总被引:2,自引:0,他引:2  
通过室内模型试验,比较土工格室和土工格栅加筋材料加筋后软土顶面的应力和承载力的变化,分析不同填料,不同筋材和不同的格室高度对加筋效果的影响。  相似文献   

10.
为研究土工格栅拉伸性能,以室内无约束拉伸试验为基础,建立侧限约束下的格栅拉伸试验离散元PFC3D模型,分析拉伸速率、上覆荷载对其拉伸性能的敏感程度,探讨侧限约束下土体位移与格栅拉伸变形相互作用的机理,揭示筋土界面孔隙率的发展规律。结果表明:增大拉伸速率、上覆荷载均能提高格栅极限拉伸强度,其中上覆荷载在较小拉伸速率时对格栅的应变影响较大,其由8%减少到5.2%;靠近土工格栅筋土界面区域的土体位移最大,已初步形成筋土拉伸剪切位移带,上覆荷载越大,筋土拉伸剪切位移带的位移越小;随着土工格栅拉伸变形的增加,逐渐形成了筋土界面区域疏密相间的孔隙率分布特征,筋土上下界面部分区域的孔隙率变大,界面砂土发生剪胀现象。  相似文献   

11.
选用橡胶作为加筋材料, 通过三轴剪切试验对半球形复合立体加筋砂土进行强度特性研究, 分析了不同半球数量、围压下加筋砂土的强度特性、应力-应变关系和破坏形态, 讨论了围压、半球数量和加筋层数对加筋砂土强度的影响, 得到了半球加筋的作用机理. 试验结果表明: 低围压时加筋砂土的抗剪强度增幅较大; 加筋效果随着筋材层数的增加而增强; 与水平筋相比, 半球形复合体加筋对土体的约束力较大, 加筋土的抗剪强度增幅也较大, 且随着半球数目的增加, 加筋砂土的黏聚力、内摩擦角也显著提高.  相似文献   

12.
土工格室结构层抗变形性能模型试验   总被引:3,自引:0,他引:3  
采用土工格室加筋松软地基,能有效提高地基的强度和刚度,减少地基沉降变形,这在许多实际工程中已得到验证。但对土工格室结构层本身的变形性状,尚缺乏深入系统的研究。利用自制的试验装置,通过静力载荷试验,对土工格室结构层抗变形性能进行了研究,并对土工格室规格、填料类型和压实度3种影响因素进行了对比分析。试验结果表明:土工格室加固的黄土和粗砂结构层的抗变形能力明显得到提高;填料为粗砂时,土工格室结构层的变形模量平均提高了3.25倍,填料为黄土时,提高了1.73倍;土工格室焊距对土工格室结构层抗变形性状无显著的影响,而对土工格室压实度和土工格室填料影响较大。  相似文献   

13.
麦秸秆加筋土的强度特性及细观结构分析   总被引:2,自引:0,他引:2  
为了分析麦秸秆加筋对土体抗剪强度的影响,开展了4种加筋率(0.1%,0.2%,0.3%,0.4%)和3种加筋长度(5,10,15 mm)下的三轴剪切试验.通过CT(计算机断层扫描)扫描图像,对比分析了加筋土和素土在加载过程中的细观结构变化.结果表明:麦秸秆加筋黏性土的抗剪强度和抗变形能力较素土都有显著提高,其中筋材长度为10 mm时加筋效果较好.所研究加筋条件下,土体黏聚力较素土黏聚力增大0.1~2.3倍,内摩擦角变化在±2°范围内.与素土相比,加筋土在剪切过程中无明显的宏观剪切破坏,均为鼓胀破坏.围压较小时,加筋作用明显,对土体的刚度影响较大,随着围压的增大,影响逐渐变小.CT扫描结果显示,麦秸秆加筋能够限制土体变形和裂纹扩展.因此,麦秸秆适宜作为黏性土的加筋材料.  相似文献   

14.
含水率和加筋条件对棕榈加筋土的影响   总被引:1,自引:0,他引:1  
通过击实试验、无侧限抗压试验,将加筋土与未加筋土的无侧限抗压强度、破坏时的轴向应变和正割模量相比较,研究了含水率对不同加筋条件下棕榈加筋土抗压强度和变形的影响,并从能量吸收能力角度说明含水率和加筋条件对加筋土强度和变形的影响。结果表明:增强土样抗压强度的适宜加筋率和筋材长度分别为0.5%和20 mm;且土样在具有最优含水率的条件下,纤维增强效果最佳,在最优含水率附近纤维增强效果都成降低趋势;加筋土的能量吸收能力随加筋率、纤维长度、含水率的增加而增加;纤维的加入降低了土体的刚度。另外,土样的破坏形态由未加筋土单一剪切面的脆性破坏逐渐转变为加筋土多剪切面的塑性破坏。  相似文献   

15.
聚苯乙烯轻质混合土三轴压缩试验研究   总被引:6,自引:0,他引:6  
对不同水泥掺入比、不同密度和不同龄期的聚苯乙烯轻质混合土,进行不固结不排水和固结不排水常规三轴压缩试验,以研究聚苯乙烯轻质混合土应力应变特性的变化规律和抗剪强度指标的确定方法.试验结果表明,水泥掺入比、密度和龄期,对不固结不排水和固结不排水三轴压缩试验的应力应变特性和抗剪强度指标c,φ的大小有不同程度的影响。  相似文献   

16.
为明确短时冻区残积土体细观破坏规律,以福建省短时冻区典型残积土为例,基于三轴试验数据对不同短时冻融次数下残积土的细观参数进行标定,同时分析围压及冻融次数下残积土细观破坏过程.结果表明:残积土在压缩过程中,逐步呈现出一个菱形区域,最终菱形区域会形成一个剪切面.残积土压缩时破坏过程可分为弹性变形阶段、塑性发展与强度峰值阶段以及峰后破坏三个阶段.残积土的稳定性会因土体周围围压的上升和土体冻融次数的减少而提高,同样也会增加残积土的抗剪强度.  相似文献   

17.
为探究圆形洞室围岩在不同围压下加载过程中的力学特征变化,对制作的含圆形洞室的类岩石材料进行双轴加压试验,运用数字图像技术记录全场应变演化过程,并根据室内试验建立颗粒流模型,探究了围压对洞室围岩的抗压强度以及裂纹的发育的影响。结果表明:尺寸效应对模型的力学特征影响较大,圆形洞室模型峰值抗压强度随着洞室尺寸的增加而减小;当围压增大时,压剪作用增强,洞室模型的破坏模式由以张拉应变为主向拉剪复合破坏为主转变;圆形洞室应变集中区域会随着围压的增大由洞口上下侧向两帮转移;当围压逐渐增大,张拉作用被抑制,洞口两侧破坏程度逐渐增加,收缩变形程度逐渐增大;最后通过数值模拟验证了圆形洞室围岩在不同围压下加载过程中的力学变化特征。  相似文献   

18.
提出了一种全新的土工格室路面加筋结构用于高等级重载交通道路.其关键点就是根据结构的受力特点构造了面层带有竖向裂缝的空间轴对称模型,采用矩形截面环形单元模拟混凝土结构,Goodman剪切单元模拟土工格室及其与混凝土间的相互作用,实验室模型试验确定力学计算参数.通过有限元方法分析温度荷载和车辆荷载的影响,同时变换结构参数分析其敏感性,总结了这种新路面结构的受力规律.实验室加载试验也验证了分析方法的可靠性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号