首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
拉伸变形应变硬化指数的力学解析   总被引:7,自引:2,他引:7  
实验上已判明应变硬化指数具有很强的结构敏感性,而且精确实验测量结果表明:nυ(恒速度应变硬化指数)、nε(恒应变速率应变硬化指数)和np(恒载荷应变硬化指数)随ε应变)的变化规律是完全不相同的. 从拉伸变形的状态方程出发,并考虑超塑性与塑性变形的结构敏感性(即应变硬化指数不仅与应变有关而且与应变速率有关),从理论上导出了nυ,nεnp的解析表达式,揭示了nυ,nεnpε变化的力学本质,并解释了典型材料Zn-5%Al(质量分数)的实验结果,证明了理论的可信性.  相似文献   

2.
超塑性拉伸似粘性变参数流变方程   总被引:4,自引:0,他引:4  
给出能精确表达Zn-Al22%,Al-Zn-Mg和Al-Zn-Cu-Cr比较典型的3处超塑性合金的lgσ-leε关系的多项式,进而用m(ε)和k(ε)的解析表达式求得m和k均变数的似粘性流变方程,方程中包含了与m-lgε曲线相关的3个参数mm,mk和η,并且指出,mm,mm/mk越大,合金的超塑性越好,而且Backofen方程只是变参数本构方程的一个特例。  相似文献   

3.
超塑性拉伸似粘性流变方程中本构参数的力学解析   总被引:6,自引:0,他引:6  
在回顾超塑性拉伸似粘性流变方程中本构参数m和k研究历史的基础上,建立了m和k均为变数的微分关系.通过用已知函数模拟应变速率敏感性指数m与应变速率(?)的关系曲线,从理论上求得m(?),k(?)以及k和m关系的解析表达式,论证了m和k均为材料的应变速率敏感性参数,明确了m为应变速率敏感性指数,k为应变速率敏感性系数,建立了m和k的力学解析理论,理论曲线与3种超塑性合金的实测曲线拟合得很好,为了定量计算,还给出精确模拟的3种合金的m(?)曲线和k(?)曲线的多项式.  相似文献   

4.
拉伸变形应变硬化指数的力学涵义及其规范测量   总被引:11,自引:4,他引:7  
鉴于建立超塑性与塑性变形定量力学解析理论的重要性,人塑性拉伸变形状态方程出发,导出Hollomon方程,并明确了方程中的材料常数和应变硬化指数的力化指数的测量公式,对应每个公式又在变硬化指数的传统测量方法,、计算机模拟测量方法和精确测量法,并针对典型材料Zn5%A1(质量分数)在常态(18℃)和超塑状态(340℃下给陋3种典型变形路径下应变硬化指数的实测结果,由于三者之间存在大的偏差,于是从实验上  相似文献   

5.
采用高温拉伸实验并结合金相分析的方法,研究了微量V元素对5083铝合金超塑性影响.结果表明,微量V可以使5083合金中变形后的纤维组织更加细小均匀,抑制合金再结晶过程晶粒的长大,进而提高5083铝合金的超塑性.传统5083铝合金与加入微量V,5083铝合金轧制板材经500°C一定时间的热处理后,再结晶晶粒尺寸分别为10和20m,5083合金板材505°C~515°C下的延伸率由208%提高到254%.  相似文献   

6.
从应变硬化指数n的定义出发,从理论上导出了在不同的典型变形路径(恒应变速率,恒十字头速度v和恒载荷p)下用实验参数p(变形载荷),v(十字头速度)和l(试样标距长度)表达的一组n值测量公式,并根据这组公式建立了在恒,恒v,和恒p条件下均能测量n(恒的应变硬化指数),nv(恒v的应变硬化指数)和np(恒p的应变硬化指数)的统一测量方法,同时从分析传统测量方法必然存在理论误差和随机误差出发,提出了精确测量方法.还根据典型超塑性合金的实验给出在同一组恒,恒v或恒p变形路的曲线上对n,nv和np的测量结果,由此判明超塑性与塑性变形的结构敏感性.此外在不同组恒,恒v或恒p曲线上用相同的测量公式所测得的同一个n,nv或np也不相同,由此加深了对n,nv和np的数学表达与实测结果之间关系的认识,从而实现了对参数n实验精细分析的目的.  相似文献   

7.
拉伸变形应变硬化指数的实验测量及其精细分析   总被引:1,自引:0,他引:1  
从应变硬化指数n的定义出发,从理论上导出了在不同的典型变形路径(恒应变速率ε ,恒十字头速度v和恒载荷p)下用实验参数p(变形载荷),v(十字头速度)和l(试样标距长度)表达的一组n值测量公式,并根据这组公式建立了在恒ε,恒v,和恒p条件下均能测量 n-ε(恒?的应变硬化指数),n-v(恒v的应变硬化指数)和n-p(恒p的应变硬化指数)的统一测量方法,同时从分析传统测量方法必然存在理论误差和随机误差出发,提出了精确测量方法. 还根据典型超塑性合金的实验给出在同一组恒ε,恒v或恒p变形路的曲线上对n-ε,n-vn-p的测量结果,由此判明超塑性与塑性变形的结构敏感性.此外在不同组恒?,恒v或恒p曲线上用相同的测量公式所测得的同一个n-ε,n-vn-p也不相同,由此加深了对n-ε,n-vn-p的数学表达与实测结果之间关系的认识,从而实现了对参数n实验精细分析的目的.  相似文献   

8.
氧化物陶瓷具有优异的性能和广阔的应用前景.由于陶瓷的本征脆性,超塑性成形是陶瓷塑性加工的首选途径.但应变速率较低是制约氧化物陶瓷超塑性加工进一步应用的主要因素.本文综述了氧化物陶瓷高应变速率超塑性的最新研究进展,围绕影响超塑性变形的主要因素,如晶粒尺寸、晶粒长大、晶界扩散、化学键结构、晶界形态及空洞的形核与长大等,综述了提高超塑性应变速率的方法途径,并分析其变形行为及影响机制.  相似文献   

9.
应变速率敏感性指数m是判定材料超塑性的重要力学指标, 用拉伸实验测量 m 值的力学研究已有很多, 对超塑性的进展也有很大贡献. 首先从回顾已有拉伸实验测量 m值的公式, 并且把它们归类为定长度 m 值的ml, 恒速度 m值的mv和定载荷 m 值的mP三种典型变形路径下的应变速率敏感性指数. 进而基于拉伸变形的本构方程和塑性力学的基本原理, 建立了广义m值的约束方程. 结合三种典型变形路径规范了m值的力学定义, 并由本构方程定义的广义m值公式统一推导出ml, mv和mP的测量公式. 提出结合典型变形路径用数值模拟测量 m值的精确方法. 测量结果表明, m值不仅不是常数, 而且其变化规律与所处的变形路径有密切关系, 用相同的测量公式测量不同变形路径下的 m 值, 测得的结果相差悬殊, 在同一变形路径下用不同的测量公式测得的结果也各异. 对于 m 值的测量必须指明所处的变形路径, 并且要用对应的测量公式才能测得正确结果. 此外, 还从理论和实验两方面都解答了为什么恒速变形路径下的 mv值往往是负值, 而定载荷变形路径下测得的mP值往往会大于1. 对m值的深入分析和精确测量的探讨, 旨在为超塑性宏观变形的力学规律与微观物理机理的衔接的研究提供条件.  相似文献   

10.
对FCC铜单晶的方形截面试样在滑移变形机制下的拉伸颈缩过程进行了分析。文中考虑真实的夹持条件和试验中拉伸轴与晶体 [001] 轴方向难以预知的微小偏轴,采用晶体塑性理论及本文第一作者建议的晶体塑性有限变形计算方法对方形截面试样的三维颈缩进行大变形分析。通过与试验比较,证实本文结果合理地描述了铜单晶试样在拉伸作用下的载荷位移关系,并合理地反映了铜单晶试样的颈缩变形形状特点和微小偏轴可能产生的影响。 为了讨论试样截面形状的影响,文中还将单晶铜方形截面试样和圆柱试样的拉伸颈缩作了比较。  相似文献   

11.
超塑性合金的结构敏感性很强,板材超塑性充模胀形的变形规律,不仅与应力状态有关,而且与加载路径有密切关系.超塑性自由胀形边界固定不受摩擦影响,因此,研究超塑性自由胀形的变形规律及其实验装置,是超塑性充模胀形成形的重要基础.采用纯净高压氩气源并用炉外加热系统加热后作为高温高压胀形加载介质,提高了热效率和试件加热的均匀性;采用光电转换非接触测量装置,避免了接触式顶杆对自由胀形件极点处附加应力和温度不均匀的影响;以筒形压边绝热炉内试件的温度和压力为依据,反馈调控温度和压力,提高了试件温度和压力的测控精度;在加载气路中通过准确测控步进电机转角实现调压,并控制电磁阀加载,显著增加了调控气压的响应特性.同时介绍了恒压加载、压力跃变加载以及附加背压的对向差压加载等几种自由胀形典型加载路径的实现步骤和方法,提供了测量超塑性自由胀形应变速率敏感性指数m值和探索提高超塑性自由胀形变形速度的新途径.  相似文献   

12.
考虑温度影响的UH模型   总被引:1,自引:0,他引:1  
首先分析了温度对饱和粘土力学特性的影响规律,基于真强度概念并结合潜在强度的确定方法推导出不同温度下饱和粘土临界状态应力比的理论计算公式;随之将温度作为变量引入到姚仰平等人提出的UH模型(采用统一硬化(Unified Hardening)参数建立的三维超固结土弹塑性本构模型)中,建立了能够考虑温度影响的UH模型;并根据姚仰平等人提出的变换应力方法,将模型简单地三维化.该模型继承并发展了UH模型,不仅能够描述某一恒温下超固结土的硬化、软化、剪胀等应力应变特性,而且能够反映由于升温引起的体积变化特性.与修正剑桥模型相比,所提出的模型仅增加了一个参数来反映粘土的前期固结压力随温度升高而降低的特性.在常温时此模型就退化成原始的UH模型,而在常温且无超固结时就退化为修正剑桥模型.模型的温度适用范围为介于孔隙水熔点与沸点之间的温度(例如本文所采用试验所涉及的介于适用范围内的温度20℃~95℃).通过与已有的试验结果对比分析表明,模型能够较为合理地描述超固结土的基本力学特性.  相似文献   

13.
以存在二级有序转变的铁基固溶体为背景,分析了有序结构中对位错组态、位错内反相畴界结构、部分位错滑移行为等对固溶体塑性影响的机制.以变形引起结构无序化为基础,阐述了有序固溶体变形软化和退火硬化的原理.分析认为,以适当合金化的方式降低反相畴界能、或将高温无序状态保留到低温都可以提高部分位错独立滑移的能力,进而明显提高固溶体的低温塑性.相关机制也可用于提高其他金属基有序固溶体的低温塑性.  相似文献   

14.
温度影响下煤层顶板砂岩的破坏机制及塑性特性   总被引:1,自引:0,他引:1  
通过扫描电镜(SEM)研究了煤层顶板砂岩拉伸断裂后的断口形貌图, 结合砂岩破坏的表面形貌图, 在细观和微观层次对砂岩的断裂机制进行了研究; 比较了受不同温度影响后的微观断口形貌差异, 特别是高温疲劳断口的出现, 证实了温度对砂岩破坏的微观断裂机制产生了影响, 即随着温度的升高, 砂岩的断裂机制由以局部脆性断裂机制为主向局部脆性和延性耦合断裂机制转变, 并观察到大量的塑性变形, 这是影响砂岩强度变化的根本原因, 并可能是微褶皱.  相似文献   

15.
从理查森方程出发,分析了阴极温度的变化对阴极饱和发射电流密度的影响,提出了研究阴极工作状态对阴极初始温度影响的重要性。对热阴极支取电流时造成阴极温度下降的现象进行了实验研究和机理分析。实验表明阴极在支取2.92A/cm^2的电流时将会使阴极温度下降30℃左右。用热电子发射理论对实验结果进行了分析,推导出阴极温度随支取发射电流变化的关系公式。从公式出发分析了影响阴极温度下降的各种因素,并对其影响进行了理论分析,分析结果与实验非常相符。  相似文献   

16.
在结构动力学关于多自由度自由振动的理论前提下,以两端箍支的混凝土箱梁为模型,通过有限元程序ANSYS建模,得到了相应温度条件下的结构响应;分析了不同温度场分布、不同季节、不同跨度对结教模态参数的影响。得出的结论对混凝土箱梁结构的健康检测具有重要的借鉴意义。  相似文献   

17.
温度是影响铁基合金层错能的一个重要因素,随温度的增加,置换型或间隙型合金的层错能随之增加. 从层错能的热力学模型推导出dγ0/dT的理论计算式,从而建立了dγ0/dT的定量关系: dγ0/dT=(dγch/dT) +(dγseg/dT)+(dγMG/dT) ,计算所得的dγ0/dT值与测量值符合.化学自由能对层错能起正向作用,且大于磁性和偏聚的作用. 磁性和合金元素在层错区的偏聚均降低合金的层错能,dγMG/dT<0, dγseg/dT<0, 其影响随温度的增加而减小.基于dγ0/dT,合理解释了在热力学平衡温度(T0)合金的层错能并不为零以及T0两侧层错能均为正值的实验结果.  相似文献   

18.
钛合金的热氢处理(thermo-hydrogen treatment,THP)可以增加塑性相的体积分数,促进位错运动和降低流动应力,从而改善超塑性性能,有效降低钛合金的热加工难度,目前对钛合金热氢处理作用机理的解释多在晶粒和组织层面,少量电子结构层面的分析也不够明确,无法从本质上解释氢的固溶对α-Ti和β-Ti的致塑机理.本文运用固体与分子经验电子理论(empirical electron theory,EET)研究了氢在α-Ti,β-T_i的不同位置固溶时Ti的价电子结构变化,通过键距差方法(bond length diffrence method,BLD)计算得出了Ti原子间共价键电子对数、键能大小及滑移面间晶格电子密度,指出氢固溶后,滑移系上Ti-Ti键间共价电子对数、键能的明显下降及滑移面间晶格电子密度的增加是钛合金氢致超塑性的重要原因.  相似文献   

19.
为了研究温度对煤吸附瓦斯特性的影响对于深部高温瓦斯矿井进行通风设计及煤层气资源评价的指导意义,利用瓦斯吸附装置,对不同煤样进行不同温度下吸附等温线及吸附常数的测定。实验表明:吸附常数b与温度T较好的符合负指数关系;而随着温度的升高,吸附常数a值变化不大,可以认为是某一恒定值。  相似文献   

20.
超塑性成形已经在形状复杂、尺寸精度高的零部件加工中得到广泛的应用, 并有良好的发展前景. 然而, 超塑性成形均处于多向应力状态. 但是, 长期以来, 均把单向拉伸的本构方程直接推广处理多向的理论问题. 这在定量处理中是否正确, 亟需理论证明. 首先简述了超塑性一维拉伸和二维胀形变m值本构方程的建立, 并结合从连续介质塑性力学基本理论所导出的自由胀形的等效应力σ 和等效应变速率 的解析式, 分别用拉伸和胀形的本构方程导出了超塑自由胀形最佳加压规律的解析表达式. 进而结合典型超塑性合金ZnAl22实验数据进行了定量比较. 结果判明, 不能把单向拉伸的本构方程直接推广处理二维胀形的定量力学问题, 处理胀形的定量力学问题, 必须用在胀形应力状态下建立的二维胀形的本构方程.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号