首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Weber KL  Sokac AM  Berg JS  Cheney RE  Bement WM 《Nature》2004,431(7006):325-329
Proper spindle positioning and orientation are essential for asymmetric cell division and require microtubule-actin filament (F-actin) interactions in many systems. Such interactions are particularly important in meiosis, where they mediate nuclear anchoring, as well as meiotic spindle assembly and rotation, two processes required for asymmetric cell division. Myosin-10 proteins are phosphoinositide-binding, actin-based motors that contain carboxy-terminal MyTH4 and FERM domains of unknown function. Here we show that Xenopus laevis myosin-10 (Myo10) associates with microtubules in vitro and in vivo, and is concentrated at the point where the meiotic spindle contacts the F-actin-rich cortex. Microtubule association is mediated by the MyTH4-FERM domains, which bind directly to purified microtubules. Disruption of Myo10 function disrupts nuclear anchoring, spindle assembly and spindle-F-actin association. Thus, this myosin has a novel and critically important role during meiosis in integrating the F-actin and microtubule cytoskeletons.  相似文献   

5.
6.
7.
Chang P  Jacobson MK  Mitchison TJ 《Nature》2004,432(7017):645-649
The mitotic spindle is typically thought of as an array of microtubules, microtubule-associated proteins and motors that self-organizes to align and segregate chromosomes. The major spindle components consist of proteins and DNA, the primary structural elements of the spindle. Other macromolecules including RNA and lipids also associate with spindles, but their spindle function, if any, is unknown. Poly(ADP-ribose) (PAR) is a large, branched, negatively charged polymeric macromolecule whose polymerization onto acceptor proteins is catalysed by a family of poly(ADP-ribose) polymerases (PARPs). Several PARPs localize to the spindle in vertebrate cells, suggesting that PARPs and/or PAR have a role in spindle function. Here we show that PAR is enriched in the spindle and is required for spindle function--PAR hydrolysis or perturbation leads to rapid disruption of spindle structure, and hydrolysis during spindle assembly blocks the formation of bipolar spindles. PAR exhibits localization dynamics that differ from known spindle proteins and are consistent with a low rate of turnover in the spindle. Thus, PAR is a non-proteinaceous, non-chromosomal component of the spindle required for bipolar spindle assembly and function.  相似文献   

8.
Cell biology. Cell cycle gets more cyclins   总被引:5,自引:0,他引:5  
T Hunt 《Nature》1991,350(6318):462-463
  相似文献   

9.
10.
11.
Sherlock G 《Nature》2006,443(7111):513-515
  相似文献   

12.
13.
Cell cycle. Checkpoints and spindles   总被引:1,自引:0,他引:1  
P Nurse 《Nature》1991,354(6352):356-358
  相似文献   

14.
Wittenberg C 《Nature》2012,481(7381):273-274
  相似文献   

15.
T Hunt 《Nature》1992,355(6361):587-588
  相似文献   

16.
以TMC公司组装生产线为研究对象,运用模特法及秒表测时法测定了流水线各工位的作业时间,找出了影响流水线生产能力的瓶颈工位;依据ECRS(取消、合并、重排、简化)和动作经济原则改善了该流水线的节拍,包括对相关工位作业内容的重新分配、对生产流程进行重新布局.新方案的实施使该组装线生产能力提高了38.59%.  相似文献   

17.
Kastan MB 《Nature》2001,410(6830):766-767
  相似文献   

18.
Cell biology: the cell cycle as a cdc2 cycle   总被引:10,自引:0,他引:10  
A W Murray 《Nature》1989,342(6245):14-15
  相似文献   

19.
Embryonic assembly of a central pattern generator without sensory input   总被引:7,自引:0,他引:7  
Suster ML  Bate M 《Nature》2002,416(6877):174-178
Locomotion depends on the integration of sensory information with the activity of central circuitry, which generates patterned discharges in motor nerves to appropriate muscles. Isolated central networks generate fictive locomotor rhythms (recorded in the absence of movement), indicating that the fundamental pattern of motor output depends on the intrinsic connectivity and electrical properties of these central circuits. Sensory inputs are required to modify the pattern of motor activity in response to the actual circumstances of real movement. A central issue for our understanding of how locomotor circuits are specified and assembled is the extent to which sensory inputs are required as such systems develop. Here we describe the effects of eliminating sensory function and structure on the development of the peristaltic motor pattern of Drosophila embryos and larvae. We infer that the circuitry for peristaltic crawling develops in the complete absence of sensory input; however, the integration of this circuitry into actual patterns of locomotion requires additional information from the sensory system. In the absence of sensory inputs, the polarity of movement is deranged, and backward peristaltic waves predominate at the expense of forward peristalsis.  相似文献   

20.
Role of ran GTPase in cell cycle regulation   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号