共查询到17条相似文献,搜索用时 62 毫秒
1.
基于Elman神经网络的污染源数据预测 总被引:1,自引:0,他引:1
为了给环境保护决策提供有价值的预测数据,提出利用Elman神经网络建立污染源数据预测模型的方法,以大气中的主要污染物SO2为例,用预测模型表征SO2的浓度和气温、相对湿度、风速、时间等影响因子及其历史数据之间的复杂关系.使用训练后的模型对数据进行模拟仿真,结果表明所建立模型的计算输出值与实际样本数据有着较好的一致性,模型预测效果优于基于BP神经网络的预测模型. 相似文献
2.
交通流诱导系统是智能交通系统领域中一项重要的研究内容,而交通流量的预测问题则是交通流诱导系统的核心问题.因此,能够实时准确地预测交通流量成为诱导系统是否能够有效实现的关健问题.根据交通流的特性,分析交通数据采集过程中错误数据产生的原因,提出相应的处理方法,并在此基础上采用Elman神经网络对智能交通系统的流量预测进行建模.该系统采用C#并结合Matlab进行开发,通过Elman神经网络算法实现流量的预测,并采用图表的方式直观地显示预测结果.应用结果表明:该方法可以有效地对交通流量进行预测,且预测精度可以满足实际交通诱导的需要. 相似文献
3.
基于PMV指标的室内环境热舒适度控制器设计 《山东科学》2016,29(1):110-115
针对目前室内热环境调节缺少合理控制方法的问题,本文在分析温度、湿度、风速和平均辐射温度四个热环境参数对PMV指数影响的基础上,基于人体舒适度模型的模糊控制,将嵌入式ARM9芯片作为主控制芯片,结合无线传感网络,设计了一种室内舒适度控制器,并阐述了其系统构成与决策方法。该控制器不仅布设方便,而且能够在保证人体室内舒适度的情况下,减少调节室内热环境过程中带来的能耗。 相似文献
4.
针对神经网络预测电池阵功率存在的模型阶数难以确定及预测精度低下的问题,提出一种基于改进的Elman神经网络的双向预测模型。该模型利用关联层动态神经元的反馈连接,将未来预测网络和过去预测网络的信息进行融合。使网络对时间序列特征信息的记忆得到加强,从而提高预测精度。用该文提出的双向预测模型对电池阵功率进行预测,输入层仅需一个节点,不需事先对模型进行定阶。仿真预测表明,预测精度比单向模型明显提高,且网络具有较好的泛化能力。 相似文献
5.
基于Elman神经网络的动力配煤发热量及着火温度的预测 总被引:1,自引:0,他引:1
针对采用实验法测定电厂动力配煤的发热量和着火温度存在操作繁琐和信息滞后较大等不足,建立Elman神经网络预测模型.该网络模型在学习过程中确定混煤的发热量和着火温度与单煤的水分、灰分、挥发分之间的非线性映射关系.模型利用单煤的水分、灰分和挥发分含量直接预测混煤的发热量和着火温度,预测结果误差较小.利用置信区间分析法对预测模型的预测效果进行检验.研究结果表明:预测模型具有较高的可靠性和置信度. 相似文献
6.
针对地球变化磁场时间序列的混沌特性,提出了一种集成经验模态分解(ensemble empirical mode decomposition,EEMD)和改进Elman神经网络的地球变化磁场预测模型.首先,利用EEMD将非平稳的地球变化磁场时间序列分解为一系列具有不同特征尺度的本征模态函数(intrinsic mode function,IMF);然后,针对每一个IMF分别建立改进Elman神经网络模型,选择各自适合的最优模型参数;最后,以地磁台站实测的地球变化磁场数据为研究对象,并与基于单一Elman神经网络预测模型相比较,结果表明,EEMD-改进Elman神经网络模型的预测值能紧跟地球变化磁场的变化趋势,且明显优于基于单一Elman神经网络的模型,体现出更好的预测效果.在地磁Kp3时,预测3h平均绝对误差为1.74nT. 相似文献
7.
Elman神经网络是一种典型的回归神经网络,比BP神经网络具有更强的计算和适应时变特性的能力,因而非常适用于预测股市这一类极其复杂的非线性动力学系统。文章给出一种基于Elman神经网络的股票市场建模、预测及决策方法,对浦发银行股价在时间序列上作了连续若干天的短期预测,实验结果取得较高的预测精度、较为稳定的预测效果和较快的收敛速度。这表明该预测模型对于个股价格的短期预测是可行和有效的。 相似文献
8.
文章将动态回归神经网络(Elman)预测方法应用于城市公交客流量的预测, 通过对合肥市公交量的历史数据分析得到公交客流量的时间序列,将时间序列视为一个从输入到输出的非线性映射,对网络进行学习与训练仿真实验,并与BP神经网络输出结果进行了比较,并对网络模拟结果和历史数据进行了线性回归分析,求得一定的相关系数.结果表明,应用Elman神经网络方法比BP神经网络对公交客流量进行短期预测,预测精度高及效果好. 相似文献
9.
利用动态递归Elman神经网络的具有结构简单,运算量少,适合于动力系统辩识等特点,对Logistic混沌映射时间序列及气温时间序列进行了预测,并分析了预测误差。结果显示Elman神经网络对非线性时间序列具有良好的预测特性。 相似文献
10.
为了提高非线性预测控制中预测模型的精度,提出一种基于递归神经网络建模的预测控制方案.采用改进Elman神经网络在线建立预测模型,用递推最小二乘法在线修改神经网络权值,并引入误差补偿环节,从而达到改善预测模型精度的目的,使控制系统的控制性能得到提高.仿真实验表明了该方法的有效性. 相似文献
11.
空调系统的负荷与诸多影响因素之间是一种多变量、强耦合、严重非线性的关系,且这种关系具有动态性,因而传统方法的预测精度不高,而动态回归神经网络能更生动、更直接地反映系统的动态特性。针对这个特点,建立了基于Elman型神经网络的空调负荷预测模型,并进行了实例预测。文中还比较了Elman网络和BP终结建模效果,仿真实验证明了Elman神经网络具有动态特性好、逼近速度快、精度高等特点,说明Elman网络是一种新颖、可靠的负荷预测方法。 相似文献
12.
针对单神经网络模型外推效果不理想、泛化能力较差的缺点,将神经网络集成用于诺西肽发酵过程的建模.采用Bagging技术进行重复取样用于个体神经网络的训练,结论生成时采用加权平均法,各子网络的权重利用差分进化算法来确定.个体神经网络选用典型的动态神经网络Elman网络,通过对多个Elman神经网络模型的输出进行融合,建立了基于神经网络集成的诺西肽发酵产物浓度模型.最后将所建立的模型与基于单神经网络的模型进行了比较,结果说明该模型具有更高的精度和泛化能力. 相似文献
13.
基于相空间重构及Elman网络的停车泊位数据预测 总被引:1,自引:0,他引:1
针对停车诱导系统(PGIS)中短时空余停车泊位时间序列数据预测问题,提出应用相空间重构与Elman神经网络相结合的方法来进行预测.首先分析了相空间重构的技术原理,在此基础上导出时间序列预测模型,并以Elman神经网络训练模拟该模型.介绍了相空间重构与Elman神经网络相结合的预测方法的具体实现过程与步骤,提出了短时空余停车泊位数据的预测效果评价指标.通过预测实例表明,该方法用于停车诱导系统中短时空余停车泊位数据的预测具有较好的预测准确性和有效性. 相似文献
14.
杨杰;刘桂雄 《华南理工大学学报(自然科学版)》2009,37(2)
针对活塞环渗氮硬化工序建模困难的情况,通过主成分分析法(PCA)提取氮化工序特征参数,降低了质量模型输入样本维数,建立了基于小波Elman神经网络的活塞环制造关键工序质量预测模型,实现了工序过程质量波动趋势的预测,为后续的工艺优化和质量改进奠定基础。结果表明,该方法可以有效地改进渗氮硬化工序的质量控制,质量预测模型对输出质量特征值的预测准确率达到89%,具有比标准Elman网络更好的预测精度和收敛速度. 相似文献
15.
多源多工序是现代制造过程的一个显著特征,针对该特征提出了一种基于主成分分析,和Elman网络的机械产品质量建模的方法。通过对样本数据空间的主成分分析,能够保证在信息损失最少的情况下,对高维变量空间进行降维处理,减少样本数据间的相关性。应用典型的动态回归Elman神经网络,实现复杂非线性系统进行建模和预测;还将其应用于冷轧带肋钢筋的机械性能预测中。 相似文献
16.
应用Elman神经网络的混沌时间序列预测 总被引:5,自引:0,他引:5
利用改进的 Elman神经网络对 3个典型的混沌时间序列在不同的噪声水平下进行预测 ,探讨了神经网络学习与泛化之间的关系 ,通过试凑法给出了 Elman最优的隐节点个数。并利用3种指标对预测结果进行了评估 ,结果显示 Elman网络对混沌时间序列预测的良好特性 相似文献
17.
为了准确估算锂离子电池的荷电状态(SOC),在分析影响锂离子电池剩余容量时变特性的基础上,综合国内外几种常用的预测锂离子电池方法,将改进Elman网络应用到锂离子电池的容量预测和模型建立中。实验结果表明:该网络不仅局部泛化能力好,而且有较好的动态性能和逼近能力,能够满足电池容量预测的误差要求。 相似文献