首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
焙烧温度对氧化球团性质及其气基直接还原过程的影响   总被引:2,自引:0,他引:2  
考查焙烧温度对氧化球团抗压强度、孔隙率、Fe3O4含量及显微结构等性质的影响,研究不同焙烧温度下球团的还原行为,计算其还原过程动力学并确定还原过程的限制性环节。研究结果表明:随着焙烧温度的升高,氧化球团抗压强度增大,晶粒间互联及渣相增多,球团内Fe3O4含量及孔隙率则明显降低;在1 200℃焙烧时球团还原最快,其次为1 150℃和1 250℃,最慢的是于1 100℃焙烧球团;在1 100,1 150和1 200℃焙烧球团还原过程受界面化学反应控制,而1 250℃焙烧球团在还原过程前期受界面化学反应控制,后期受内扩散控制。  相似文献   

2.
借助SEM、EDS、XRD、化学分析等手段,对不同还原焙烧条件下含铌铁精矿含碳球团的金属化率、形貌、物相组成及元素分布等进行表征,在实验室模拟转底炉条件下研究了直接还原过程中铁矿物和钛、铌矿物的微观结构变化。结果表明,适当地提高还原温度或延长还原时间,有助于提高球团的金属化率,本实验条件下,在还原温度1100℃时保温20min,球团金属化率达到最大,约为86%;此外,随着还原温度的升高或还原时间的延长,金属铁不断聚集、长大,形成较大的金属颗粒,并逐渐连结形成网状结构,渣铁明显分离,含铌、钛矿物也聚集在一起分布在渣相中,为后续铌和钛的富集提供了有利条件。  相似文献   

3.
含锌电炉粉尘配碳球团的冶金特性   总被引:3,自引:0,他引:3  
以某钢铁公司含锌电炉粉尘为原料,配入适当的无烟煤制成含碳球团,焙烧球团通过还原煤保护冷却至室温后进行化学分析·研究了1150℃~1300℃的范围内,温度、时间和内配煤量对锌、铁的还原速率以及球团抗压强度的影响·研究结果表明:锌、铁的还原率均随焙烧温度、焙烧时间以及内配煤量的增加而提高;抗压强度随焙烧温度、焙烧时间的增加而增高,但随内配煤量的增加出现极值点·焙烧球团最佳的工艺参数:焙烧时间为15min,内配煤量为13 04%,焙烧温度为1250℃·此时锌的还原率为98 43%,金属化率为94 51%,抗压强度为800 6N/球·  相似文献   

4.
通过表征不同直接还原温度下碱性含锌尘泥球团外观形貌、物相组成、微观结构及抗压强度变化,并结合FactSage热力学计算,分析了碱性尘泥球团直接还原过程中渣相行为及其对球团固结强度的影响。结果表明,随着还原温度升高,碱性尘泥球团体积先膨胀后收缩,对应抗压强度也先减小后增加,碱性氧化物一直参与球团渣相的形成过程并最终形成复杂的含钙化合物渣相。固相反应是渣相形成的基础,其中间产物Ca2SiO4良好的固溶性促进了钙铁和钙镁低熔点物相的固相生成,铁氧化物的初步还原产物FeO有利于液相生成,促进球团中物相的迁移和重新排列,球团体积收缩,强度明显提高。  相似文献   

5.
钛磁铁矿球团在氧化,中性和磁化气氛中焙烧后作了定温还原实验。研究了焙烧气氛和温度对球团的固结形式、抗压强度、还原速度和还原前后表观结构的影响,并用未反应核模型分析了不同焙烧球团的还原动力学。  相似文献   

6.
为了探究含碳球团还原熔分机理,将分析纯的Fe2O3、氧化物和不同还原剂固结成球并进行等温还原实验,研究了温度、还原时间、配碳量、还原剂种类等条件对球团还原熔分行为的影响.进一步采用X射线衍射、扫描电子显微镜等手段表征了含碳球团在不同还原时间的微观结构及物相变化.实验结果表明:焙烧温度过低或过高含碳球团都不能良好熔分,配碳量增加可以提高球团还原和熔分速率,适宜的温度、碳氧摩尔比、还原剂分别是1400℃、1.2和煤粉.含碳球团还原熔分包括直接还原反应、间接还原反应、碳的气化反应、渗碳反应和铁的熔化反应,最后实现渣铁分离.  相似文献   

7.
对普通磁铁矿球团、高镁磁铁矿球团和普通磁铁矿配加MgO粉的球团固结行为进行研究,考察MgO含量(质量分数)及来源对球团固结行为的影响。研究结果表明:当焙烧温度低于1 210℃时,MgO来源对焙烧球团抗压强度影响显著,表现为普通磁铁矿焙烧球团抗压强度最高,高镁磁铁矿球团次之,普通磁铁矿配加MgO粉球团抗压强度最低。当焙烧温度高于1 240℃时,MgO含量对焙烧球团抗压强度影响较大,焙烧球团抗压强度随MgO含量的增加而降低;在MgO含量相同条件下,高镁磁铁矿球团强度高于配加MgO粉球团。来源不同的MgO均抑制磁铁矿球团氧化和新生物相的分布,从而影响了球团的固结强度。矿化是配加MgO粉球团固结的限制性环节,提高焙烧温度有助于强化外加MgO粉的矿化并减弱MgO来源的影响,进而提高焙烧球团强度。  相似文献   

8.
MHA黏结剂在钒钛磁铁矿氧化球团制备中的应用   总被引:1,自引:0,他引:1  
应用已发明的MHA黏结剂替代膨润土制备钒钛磁铁矿氧化球团,获得质量优良的高炉冶炼原料。研究表明:当MHA用量为0.25%,在预热温度950℃,预热时间10 min,焙烧温度1 250℃,焙烧时间10 min的条件下,获得的预热球团抗压强度为522 N/个,焙烧球团抗压强度为3 702 N/个。与2.0%膨润土球团矿比较,MHA成品球团的抗压强度略低,而TFe品位明显提高1.11%。2种黏结剂球团矿的还原性能指标接近。MHA球团黏结剂在氧化球团矿生产中具有良好的应用前景。  相似文献   

9.
含锌铅粉尘金属化球团的固结机理   总被引:2,自引:0,他引:2  
对含锌铅钢铁厂粉尘配碳球团,经还原焙烧后得到的高炉用金属化球团的固结机理进行了研究。结果表明:金属化球团的强度由金属铁相的数量和形态以及球团内孔隙的大小共同决定。  相似文献   

10.
为探索将含钛精矿配加到鞍钢卡拉拉精矿中进行球团生产的可行性,考察了膨润土配比、含钛精矿配比和焙烧温度对含钛球团性能的影响。结果表明:在含钛磁铁矿配比为5%~25%条件下,添加1.3%~1.5%的膨润土,可制得满足生产要求的生球;焙烧温度与含钛磁铁矿配比对成品球的抗压强度具有重要的影响,随着焙烧温度升高,抗压强度先增大后减小,在1 200℃左右达到最大值,同时增加含钛磁铁矿的配比可提高抗压强度上升幅度。从球团矿相的角度出发,采用偏光显微镜、扫描电镜(SEM+EDS)和电子探针(EPMA)等分析测试方法,分析了添加含钛磁铁矿降低球团适宜焙烧温度及含钛球团与普通球团强度差异的内在机理,发现在1 150℃时生成了钛赤铁矿,球团获得了强度来源,而高温下TFe (全铁)的氧化再结晶能力差,球团抗压强度降低,因此含钛球团的适宜焙烧温度较低;而含钛球团中钛赤铁矿较粗大,氧化再结晶能力较弱,相反普通球团具有大量细而均匀的磁铁矿晶粒,因此强度较普通球团低。  相似文献   

11.
以磁铁矿精矿(Fe3O4)为原料,添加粘结剂后进行混合、造球,将生球干燥预热后,在1150~1280℃氧化焙烧6~15 min。将所得氧化球团取样制片,采用显微镜和扫描电镜(SEM)对Fe2O3再结晶晶形进行研究。研究结果表明:Fe2O3再结晶主要形成3种晶形,即初晶、发育晶和互连晶;球团矿质量与Fe2O3的晶形有密切关系,3种不同晶形的球团抗压强度有明显差异;随着焙烧温度的升高,初晶→发育晶→互连晶形依次形成,球团抗压强度逐渐提高,当氧化球团矿内部Fe2O3大量形成互连晶时,氧化球团矿抗压强度最高,质量最好。解释了球团抗压强度随温度升高而升高的微观机理;同时验证了氧化球团矿主要靠Fe2O3再结晶的固相固结机理。  相似文献   

12.
进行了西澳超细粒磁铁精矿分别配加国产磁铁精矿和巴西赤铁精矿制备氧化球团矿的实验研究.结果表明,以100%西澳超细磁铁精矿为原料制备氧化球团矿时,球团预热及焙烧性能较差,在预热温度为1050℃、预热时间20 min及焙烧温度1300℃、焙烧时间40 min的条件下,预热球团和焙烧球团矿抗压强度分别为每个502和2313 N.西澳超细粒磁铁精矿配加40%国产磁铁精矿或20%巴西赤铁精矿时,球团适宜预热温度由1050℃分别降低到950和975℃,适宜的焙烧温度由1300℃分别降低到1250和1280℃;而且焙烧球团矿的抗压强度分别提高到每个2746 N和每个2630 N.焙烧球团矿的微观结构研究表明:配加国产磁铁精矿后,焙烧球团矿中Fe2 O3晶粒发育优良,晶粒间互联程度提高,晶粒粗大,孔隙率低,固结更加紧密.配加20%巴西赤铁精矿时,焙烧球团矿中Fe2 O3晶粒基本连接成片,Fe2 O3晶体发育良好.优化配矿是改善西澳超细粒磁铁精矿球团矿预热及焙烧性能的有效途径.  相似文献   

13.
高磷鲕状赤铁矿直接还原过程中铁颗粒长大特性研究   总被引:6,自引:0,他引:6  
研究鄂西高磷鲕状赤铁矿直接还原过程中金属铁颗粒的长大特性,并着重讨论还原温度、渣相碱度及反应时间对铁颗粒长大的影响。研究结果表明,高磷鲕状赤铁矿直接还原过程中金属铁颗粒成核及晶核长大的过程是破坏原矿鲕状结构的过程;提高还原温度以及延长还原时间有利于铁颗粒的聚集长大,提高渣相碱度不利于铁颗粒的聚集长大。  相似文献   

14.
借助X射线衍射、扫描电镜和能谱分析对铜渣碳热还原过程中的物相变化及铅锌脱除规律进行研究,并进一步分析铅锌脱除机理.研究结果表明:铜渣中的铅主要赋存于玻璃体中,而锌主要分布在铁橄榄石相中.碳热还原过程中焙烧温度的升高及时间的延长均促使铜渣中主要物相铁橄榄石分解为金属铁和二氧化硅固溶体,同时有效提高铅锌脱除率.铅脱除率与铁...  相似文献   

15.
以赤铁矿为主配加磁铁矿制备的氧化球团矿显微结构   总被引:2,自引:0,他引:2  
在链篦机 回转窑模拟装置中制备氧化球团矿,采用显微镜和扫描电镜研究单一赤铁矿及以赤铁矿为主配加磁铁矿制备的氧化球团矿显微结构.研究结果表明:当单一赤铁矿球团在焙烧温度为1320℃、焙烧时间为20min时,球团矿抗压强度达2439N/个,其显微结构较松散,并存在少量细小裂纹;当赤铁矿球团中添加20%(质量分数,下同)的秘鲁磁铁矿,在焙烧温度为1300℃、焙烧时间为20min时,球团矿抗压强度达3045N/个,其显微结构致密,Fe2O3晶体互连性较好.这表明在制备氧化球团矿时,添加磁铁矿降低了球团焙烧温度,改善了球团矿的显微结构,提高了抗压强度.  相似文献   

16.
含碳球团高温抗压强度的实验测定   总被引:5,自引:0,他引:5  
采用自制的高温抗压强度测定装置,研究了使用有机黏结剂的含碳球团在不同温度、气氛条件下高温强度随时间的变化.试验结果表明,采用有机黏结剂“CC”的含碳球团在800℃下保温1 h,球团仍能保持较高的高温强度(30~40 N/球).在球团开始显著的自还原反应之前,球团高温强度主要由有机黏结剂来保证;而在还原反应(1 000℃以上)之后,球团高温强度则主要依靠还原的大量金属铁;球团的高温强度能满足转底炉生产工艺的要求.  相似文献   

17.
不同还原度铁氧化物球团在微波场中的升温及还原行为   总被引:2,自引:0,他引:2  
为深入了解氧化球团在微波竖炉中的升温以及煤基直接还原行为,实验采用铁精矿氧化球团作为基础原料,在气体还原剂条件下进行预还原,通过控制还原时间得到不同还原度铁氧化物球团,并从不同还原度铁氧化物球团的结构以及性能出发,研究它们在微波场中的升温性能及其还原变化.电磁性能测试结果表明,球团中的铁及其氧化物在微波场中的升温速度从快到慢依次为:Fe3O4,Fe2O3,Fe,FeO.微波加热还原结果分析及矿相结构观察显示,Fe2O3的深还原时间较长,物相多重转变,造成过程温度和还原气氛跟不上氧化物的还原反应速度;Fe3O4阶段升温速度快,结构松散,有助于进一步的还原,但进入浮士体(FeO的固溶体)阶段后孔隙率降低,升温速度骤降,造成还原的困难;在还原度达到66.90%时,表层以金属铁相为主,孔洞发达,吸波性能强,在气化反应有效进行的条件下,球团将会实现快速还原.  相似文献   

18.
在实验室条件下,研究了含硼铁精矿对巴润精矿氧化球团制备工艺及冶金性能的影响.研究表明:球团原料中外配5.0%的含硼铁精矿,可将混合料中的巴润精矿配比(质量分数)提高到40%,制备的氧化球团满足高炉冶炼要求;含硼铁精矿可增加巴润精矿氧化球团的抗压强度和降低还原膨胀率,并可降低球团的焙烧温度;当含硼铁精矿配加量(质量分数)从0增加到7.5%时,球团抗压强度从2 630 N·个-1上升到3 709 N·个-1,还原膨胀率从25.69%降低到15.53%;外配质量分数为7.5%的含硼铁精矿时,球团的焙烧温度可从1 200℃降低至1 150℃,巴润精矿氧化球团满足高炉生产要求.  相似文献   

19.
研究以煤泥为还原剂,印尼某海滨钛磁铁矿在直接还原焙烧过程中,不同焙烧温度下矿物组成变化规律. X射线衍射和扫描电镜分析结果表明,随着焙烧温度的升高,钛磁铁矿逐渐被还原. 其中铁矿物经过浮士体( FeO) ,最终被还原成金属铁;而钛则经过钛尖晶石最终生成钛铁矿和少部分的铁板钛矿. 在整个直接还原焙烧过程中,金属铁颗粒在1100℃左右生成,然后不断长大,在1250℃时金属铁颗粒明显增多,在之后的保温过程中,金属铁颗粒不断长大,并在此过程中将金属铁从中分离出来.  相似文献   

20.
采用内配煤造球还原焙烧的方法对某高硅低品位铁矿进行处理,并加入钠盐强化还原,研究温度、时间和添加剂质量分数对还原的影响,并采用烟气分析仪研究含钠盐对还原过程的影响。计算CO体积分数对FeO还原和铁橄榄石(Fe_2SiO_4)生成反应的热力学影响,并采用SEM和XRD等分析还原球团的微观结构和成分。研究结果表明:还原中间产物FeO可与Si O2反应生成难以再还原的铁橄榄石(Fe_2SiO_4);提高还原反应体系中CO的体积分数可以促进FeO的还原和减少铁橄榄石(Fe_2SiO_4)的生成;钠盐能够有效地促进球团中碳的气化反应,提高球团内CO的体积分数,从而促进FeO的还原,减少Fe_2SiO_4的生成,进而改善还原效果;当内配煤质量分数(即C与Fe质量比m(C)/m(Fe))为0.4,钠盐质量分数为3%,焙烧时间为30 min以及焙烧温度为950℃时,还原效果最佳,还原球团的金属化率为56.74%,磨矿、磁选后精矿铁品位和铁回收率分别为74.16%和74.57%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号