首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
从自然界中筛选出一株Killer酵母6B2,对K酵母具有杀伤能力,同时对6B2野生酵母的生理特性进行了初步研究,发现该菌不仅具有样伤其他它酵母的能力,而且经发酵后可产生一类的香味物质。  相似文献   

2.
Y Sugisaki  N Gunge  K Sakaguchi  M Yamasaki  G Tamura 《Nature》1983,304(5925):464-466
K1 killer toxin secreted by the K1 strain of Saccharomyces cerevisiae, has been well characterized. It is a simple protein of molecular weight (MW) 11,470 (ref. 3), encoded by a double-stranded, linear RNA plasmid, called M RNA, of MW 1.1-1.7 x 10(6) (refs 4-6). It is lethal to sensitive Saccharomyces cerevisiae which does not carry M RNA. Leakage of K+ and ATP is the first distinct response in sensitive cells, and the toxic action is thought to be due to its action as a protonophore or K+ ionophore. Recently, a further killer toxin has been found in Kluyveromyces lactis IFO 1267, and it is associated with the presence of the double-stranded linear DNA plasmids, pGK1-1 (MW 5.4 x 10(6)) and pGK1-2 (MW 8.4 x 10(6)). It has been shown, by curing pGK1-1 or deletion mapping, that the structural gene for the killer toxin and immunity-determining gene reside on the smaller plasmid. Moreover, the plasmids could be transferred from K. lactis to S. cerevisiae by protoplast fusion and protoplast transformation. As the K. lactis toxin is encoded by a DNA plasmid and has a relatively wider action spectrum than K1 killer toxin, the mode of action of the toxin is highly interesting. Here we report that K. lactis toxin inhibits adenylate cyclase in sensitive yeast cells and brings about arrest of the cells at the G1 stage.  相似文献   

3.
R MacKinnon 《Nature》1991,350(6315):232-235
The voltage-activated K+, Na+ and Ca2+ channels are responsible for the generation and propagation of electrical signals in cell membranes. The K+ channels are multimeric membrane proteins formed by the aggregation of an unknown number of independent subunits. By studying the interaction of a scorpion toxin with coexpressed wild-type and toxin-insensitive mutant Shaker K+ channels, the subunit stoichiometry can be determined. The Shaker K+ channel is found to have a tetrameric structure. This is consistent with the sequence relationship between a K+ channel and each of the four internally homologous repeats of Na+ and Ca2+ channels.  相似文献   

4.
The opening and closing of voltage-activated Na+, Ca2+ and K+ (Kv) channels underlies electrical and chemical signalling throughout biology, yet the structural basis of voltage sensing is unknown. Hanatoxin is a tarantula toxin that inhibits Kv channels by binding to voltage-sensor paddles, crucial helix-turn-helix motifs within the voltage-sensing domains that are composed of S3b and S4 helices. The active surface of the toxin is amphipathic, and related toxins have been shown to partition into membranes, raising the possibility that the toxin is concentrated in the membrane and interacts only weakly and transiently with the voltage sensors. Here we examine the kinetics and state dependence of the toxin-channel interaction and the physical location of the toxin in the membrane. We find that hanatoxin forms a strong and stable complex with the voltage sensors, far outlasting fluctuations of the voltage sensors between resting (closed) conformations at negative voltages and activated (open) conformations at positive voltages. Toxin affinity is reduced by voltage-sensor activation, explaining why the toxin stabilizes the resting conformation. We also find that when hanatoxin partitions into membranes it is localized to an interfacial region, with Trp 30 positioned about 8.5 A from the centre of the bilayer. These results demonstrate that voltage-sensor paddles activate with a toxin as cargo, and suggest that the paddles traverse no more than the outer half of the bilayer during activation.  相似文献   

5.
A S Verkman  W I Lencer  D Brown  D A Ausiello 《Nature》1988,333(6170):268-269
The mechanism by which vasopressin rapidly and dramatically increases the water permeability of target epithelial cell membranes is thought to involve a cycle of exo- and endocytosis during which vesicles carrying 'water channels' are successively inserted into, and removed from the apical plasma membrane of epithelial cells. Clusters of intramembranous particles, visible by freeze-fracture electron microscopy and presumed to represent water channels, appear on apical membranes in parallel with increased transepithelial water flow. In the collecting duct, these clusters are located in clathrin-coated pits which are subsequently internalized. There has been no direct evidence, however, that subcellular membranes in vasopressin-sensitive epithelia contain functional water channels. In this report, we have used fluorophores that are sensitive to volume and do not pass through membranes to label and to measure directly the osmotic water permeability of endocytosed vesicles isolated from renal papilla. We present direct evidence that vasopressin induces the appearance of a population of endocytic vesicles whose limiting membranes contain water channels.  相似文献   

6.
The sodium channel and intracellular H+ blockage in squid axons   总被引:3,自引:0,他引:3  
E Wanke  E Carbone  P L Testa 《Nature》1980,287(5777):62-63
Sodium channels in plasma membranes can be blocked by a large variety of toxins and local anaesthetics. This property, however, is not confined to relatively large molecules. For instance, extracellularly applied small ions like hydrogen may also prevent the passive transport of permeant cations across open Na+ channels. A typical feature of this phenomenon is that the blocking action of hydrogen is gradually relieved by increasing the voltage applied across the membrane. Although in the frog skeletal muscle there is no clear evidence for a similar intracellular action, we report here for the squid giant axon remarkable effects on the ionic permeability of Na+ channels when the internal perfusate contains an excess of protons. Analysing the action of low pH inside and outside the fibre in terms of a kinetic model, we could conclude that Na+ channels in squid axons are controlled by two independent groups: one with an apparent pKa of 4.6 and the other with pKa 5.8, the former feeling one-fifth of the applied membrane potential, the latter three-quarters. As with pharmacological agents, we also show that the voltage-dependence of the H+ blockage is not affected by the presence of the inactivation gate.  相似文献   

7.
以K_2型嗜杀酵母为材料在改进Russell(1986)的嗜杀活性检测方法基础上,建立了双层平板单菌落检测法。此法可直接用于嗜杀酵母的筛选,嗜杀质粒的检测,并能在诱变后的平板上检出有嗜杀活性的营养缺陷型菌株MK_2-3:K~+,len。对K_2嗜杀特性初步研究表明,K_2型嗜杀酵母能杀死酿酒酵母(Saccha-romyces cerevisiae),但对所测汉逊酵母(Hansenula spp.)无作用。嗜杀毒素产生的最适pH和温度分别为pH4.5—5.5和20—25℃,酵母菌的对数生长期嗜杀毒素达到高峰。用紫外线(UV)、溴化乙锭(EB)、亚硝基胍(NTG)和甲基磺酸乙酯(EMS)进行消除K因子实验,表明亚硝基胍和紫外线对K因子具有一定消除率,而溴化乙锭和甲基磺酸乙酯未发现消除作用。  相似文献   

8.
H R Matthews  V Torre  T D Lamb 《Nature》1985,313(6003):582-585
It is generally accepted that the light response in retinal rods involves a reduction of ionic permeability (predominantly to Na+) in the plasma membrane of the outer segment and that this is mediated by an internal messenger which diffuses between the disk and plasma membranes. There is controversy, however, over the identity of the diffusible substance; two alternative schemes have received widespread support (for review see refs 1,2). According to the 'calcium hypothesis', light stimulates the release into the cytoplasm of calcium, leading to the blockage of channels which are normally open in darkness, whereas based on the 'cyclic nucleotide hypothesis', cyclic GMP causes the opening of channels in the dark, but is hydrolysed by a light-activated phosphodiesterase. We report here effects of introducing calcium buffers and cyclic GMP into the rod cytoplasm by means of a patch pipette, which seem to be inconsistent with the calcium hypothesis.  相似文献   

9.
H A Kolb  M J Wakelam 《Nature》1983,303(5918):621-623
The concept of purinergic neurotransmission, first proposed by Burnstock, has been confirmed in various cell types. We show here, by the patch-clamp method, that external ATP in micromolar concentrations (1-100 microM) activates cation channels in the membranes of fusion-competent myoblasts and myotubes. In cell-attached membrane patches of myoblasts and myotubes the mean number of simultaneously activated channels increases with time after external ATP application. In myoblasts only one population of channels having a mean single-channel conductance of gamma=43 pS was found, while in myotubes two populations with gamma 1=48 pS and gamma 2=20 pS were observed. Treatment of myotube membranes with acetylcholine (ACh) or carbachol resulted in two populations of channels which had conductance values and voltage-dependent mean channel lifetimes similar to those produced in response to ATP. The results show that embryonic skeletal muscle cells contain cation channels sensitive to ATP and provide evidence for a neurotransmitter-like action of ATP on these cells.  相似文献   

10.
J Vilven  R Coronado 《Nature》1988,336(6199):587-589
In many non-muscle cells, D-inositol 1,4,5-trisphosphate (InsP3) has been shown to release Ca2+ from intracellular stores, presumably from the endoplasmic reticulum. It is thought to be a ubiquitous second messenger that is produced in, and released from, the plasma membrane in response to extracellular receptor stimulation. By analogy, InsP3 in muscle cells has been postulated to open calcium channels in the sarcoplasmic reticulum (SR) membrane, which is the intracellular Ca2+ store that releases Ca2+ during muscle contraction. We report here that InsP3 may have a second site of action. We show that InsP3 opens dihydropyridine-sensitive Ca2+ channels in a vesicular preparation of rabbit skeletal muscle transverse tubules. InsP3-activated channels and channels activated by a dihydropyridine agonist in the same preparation have similar slope conductance and extrapolated reversal potential and are blocked by a dihydropyridine antagonist. This suggests that in skeletal muscle, InsP3 can modulate Ca2+ channels of transverse tubules from plasma membrane, in contrast to the previous suggestion that the functional locus of InsP3 is exclusively in the sarcoplasmic reticulum membrane.  相似文献   

11.
The role of heterotrimeric G protein in signal transduction pathway of extracellular calmodulin in regulating rbcS expression was examined in suspension-cultured cells of transgenic tobacco. Pharmalogical experiments indicated that G protein agonist cholera toxin enhanced rbcS expression and heterotrimeric G protein antagonist pertussis toxin inhibited rbcS expression in transgenic tobacco cells. Pertussis toxin also inhibited the enhancement effect caused by exogenous purified calmodulin on rbcS expression, whereas cholera toxin completely reversed the inhibitory effects caused by anti-calmodulin serum on rbcS expression. The right side-out vesicles from tobacco cell membrane were purified, which contained all of substrates for fluometric assay of GTPase activity. Exogenous purified calmodulin, when adding directly to the medium of plasma membrane vesicles, significantly activated GTPase activity in the right side-out plasma membrane vesicles, and this increase in GTPase activity was completely inhibited both by heterotrimeric G proteins antagonist pertussis toxin and nonhy-drolyzable GTP analogs GMP-PCP. These results provided the evidence that heterotrimeric G proteins may be involved in signal transduction pathways of extracellular calmodulin to regulate rbcS gene expression.  相似文献   

12.
Y Maruyama  O H Petersen  P Flanagan  G T Pearson 《Nature》1983,305(5931):228-232
Ca2+- and voltage-activated K+ channels are found in many electrically excitable cells and have an important role in regulating electrical activity. Recently, the large K+ channel has been found in the baso-lateral plasma membranes of salivary gland acinar cells, where it may be important in the regulation of salt transport. Using patch-clamp methods to record single-channel currents from excised fragments of baso-lateral acinar cell membranes in combination with current recordings from isolated single acinar cells and two- and three-cell clusters, we have now for the first time characterized the K+ channels quantitatively. In pig pancreatic acini there are 25-60 K+ channels per cell with a maximal single channel conductance of about 200 pS. We have quantified the relationship between internal ionized Ca2+ concentration [( Ca2+]i) membrane potential and open-state probability (p) of the K+ channel. By comparing curves obtained from excised patches relating membrane potential to p, at different levels of [Ca2+]i, with similar curves obtained from intact cells, [Ca2+]i in resting acinar cells was found to be between 10(-8) and 10(-7) M. In microelectrode experiments acetylcholine (ACh), gastrin-cholecystokinin (CCK) as well as bombesin peptides evoked Ca2+-dependent opening of the K+ conductance pathway, resulting in membrane hyperpolarization. The large K+ channel, which is under strict dual control by internal Ca2+ and voltage, may provide a crucial link between hormone-evoked increase in internal Ca2+ concentration and the resulting NaCl-rich fluid secretion.  相似文献   

13.
Threshold channels--a novel type of sodium channel in squid giant axon   总被引:5,自引:0,他引:5  
W F Gilly  C M Armstrong 《Nature》1984,309(5967):448-450
Sodium channels in nerve and muscle cells are functionally similar across wide phylogenetic boundaries and are usually thought to represent a single, homogeneous population that initiates the action potential at threshold and unerringly transmits it along the surface membrane. In marked contrast, many cell types are known to have several distinct potassium permeability systems. Distinguishable populations of Na channels have been reported in a few cell types, however, including denervated skeletal muscle, embryonic cardiac muscle, Purkinje cell somata and non-myelinated axons at low temperature. We report here that in squid giant axon, in standard experimental conditions, there are two functionally distinct populations of Na channels. The newly discovered population accounts for only a few per cent of the total Na permeability. The channels are selectively activated by small depolarizations and have very slow closing kinetics. Because these channels activate at voltages near the resting potential and tend to stay open for long times, they must dominate behaviour of the axon membrane in the threshold region for action potential initiation.  相似文献   

14.
The principle of gating charge movement in a voltage-dependent K+ channel   总被引:9,自引:0,他引:9  
Jiang Y  Ruta V  Chen J  Lee A  MacKinnon R 《Nature》2003,423(6935):42-48
The steep dependence of channel opening on membrane voltage allows voltage-dependent K+ channels to turn on almost like a switch. Opening is driven by the movement of gating charges that originate from arginine residues on helical S4 segments of the protein. Each S4 segment forms half of a 'voltage-sensor paddle' on the channel's outer perimeter. Here we show that the voltage-sensor paddles are positioned inside the membrane, near the intracellular surface, when the channel is closed, and that the paddles move a large distance across the membrane from inside to outside when the channel opens. KvAP channels were reconstituted into planar lipid membranes and studied using monoclonal Fab fragments, a voltage-sensor toxin, and avidin binding to tethered biotin. Our findings lead us to conclude that the voltage-sensor paddles operate somewhat like hydrophobic cations attached to levers, enabling the membrane electric field to open and close the pore.  相似文献   

15.
D C Gadsby 《Nature》1983,306(5944):691-693
Hormonal modulation of the ionic conductance of cell membranes is a topic of considerable current interest; it has a major role, for example, in the improved performance of the vertebrate heart elicited by sympathetic nerve stimulation or by circulating catecholamines, an effect involving enhanced calcium influx. beta-Agonist catecholamines also abbreviate the action potential of cardiac Purkinje fibres, and increase the resting potential in a variety of cells, including cardiac cells, a hyperpolarization usually attributed to stimulation of the electrogenic Na+/K+ pump. We show here that nanomolar concentrations of beta-catecholamines cause hyperpolarization of cardiac Purkinje fibres, not by increasing Na+/K+ pump current, but by increasing resting membrane K+ conductance. The hyperpolarization and shortening of the action potential should increase availability of Na+ channels and reduce the refractory period, effects tending to safeguard impulse propagation through the ventricular conducting system despite the increased heart rate caused by beta-catecholamine action on the sinus node pacemaker.  相似文献   

16.
Myotonic muscular dystrophy, or Steinert disease, is a dominantly inherited disease of muscle which occurs with a frequency of between 1 in 18,000 and 1 in 7,500 people (refs 1, 2). One of the prominent clinical manifestations is muscle stiffness and difficulty in relaxation of muscles after voluntary contractions. Electrophysiological signs of myotonia include increased excitability with a tendency to fire trains of repetitive action potentials in response to direct electrical and mechanical stimulation. Most experimental and clinical data suggest that myotonic muscular dystrophy arises from genetically induced alterations of the muscle membrane. We show here for the first time that muscle membranes of patients with myotonic muscular dystrophy contain the receptor for apamin, a bee venom toxin known to be a specific and high-affinity blocker of one class of Ca2+-activated K+ channels in mammalian muscle. The apamin receptor is completely absent in normal human muscle as well as in muscles of patients with spinal anterior horn disorders.  相似文献   

17.
Vertebrate rod photoreceptors hyperpolarize when illuminated, due to the closing of cation-selective channels in the plasma membrane. The mechanism controlling the opening and closing of these channels is still unclear, however. Both 3',5'-cyclic GMP and Ca2+ ions have been proposed as intracellular messengers for coupling the light activation of the photopigment rhodopsin to channel activity and thus modulating light-sensitive conductance. We have now studied the effects of possible conductance modulators on excised 'inside-out' patches from the plasma membrane of the rod outer segment (ROS), and have found that cyclic GMP acting from the inner side of the membrane markedly increases the cationic conductance of such patches (EC50 30 microM cyclic GMP) in a reversible manner, while Ca2+ is ineffective. The cyclic GMP-induced conductance increase occurs in the absence of nucleoside triphosphates and, hence, is not mediated by protein phosphorylation, but seems rather to result from a direct action of cyclic GMP on the membrane. The effect of cyclic GMP is highly specific; cyclic AMP and 2',3'-cyclic GMP are completely ineffective when applied in millimolar concentrations. We were unable to recognize discrete current steps that might represent single-channel openings and closings modulated by cyclic GMP. Analysis of membrane current noise shows the elementary event to be 3 fA with 110 mM Na+ on both sides of the membrane at a membrane potential of -30 mV. If the initial event is assumed to be the closure of a single cyclic GMP-sensitive channel, this value corresponds to a single-channel conductance of 100 fS. It seems probable that the cyclic GMP-sensitive conductance is responsible for the generation of the rod photoresponse in vivo.  相似文献   

18.
Serotonin and cyclic AMP close single K+ channels in Aplysia sensory neurones   总被引:36,自引:0,他引:36  
S A Siegelbaum  J S Camardo  E R Kandel 《Nature》1982,299(5882):413-417
We have identified a serotonin-sensitive K+ channel with novel properties. The channel is active at the testing potential; its gating is moderately affected by membrane potential and is not dependent on the activity of intracellular calcium ions. Application of serotonin to the cell body or intracellular injection of cyclic AMP causes prolonged and complete closure of the channel, thereby reducing the effective number of active channels in the membrane. The closure of the channel can account for the increases in the duration of the action potential, Ca2+ influx, and transmitter release which underlie behavioural sensitization, a simple form of learning.  相似文献   

19.
G van Meer  B Gumbiner  K Simons 《Nature》1986,322(6080):639-641
The tight junction (zonula occludens) links epithelial cells into a monolayer by forming a continuous belt of sealing contacts around the apex of each cell. They appear in thin sections as if they were 'fusions' between the apposed plasma membranes and in freeze-fracture replicas as patterns of complementary strands and furrows. These images have led to the proposal that the core of the tight junction is formed by a hexagonal cylinder of lipids. In this model, the cytoplasmic leaflet of the apical and basolateral plasma membrane domains would be continuous, whereas the exoplasmic leaflets of the two plasma membrane domains of the same cell would be separated at the tight junction and are instead predicted to be continuous between the plasma membranes of neighbouring cells. We demonstrate here that this prediction does not hold true. An endogenous glycolipid (Forssman antigen), present in the exoplasmic leaflet of the apical membrane of MDCK strain II cells, is unable to pass to MDCK strain I cells (which lack this glycolipid) under conditions where these cells are connected by tight junctions. In addition, fluorescent lipids which have been fused into the plasma membrane of one MDCK cell do not diffuse to neighbouring cells while the tight junctions between the cells are intact.  相似文献   

20.
Contemporary phospholipid-based cell membranes are formidable barriers to the uptake of polar and charged molecules ranging from metal ions to complex nutrients. Modern cells therefore require sophisticated protein channels and pumps to mediate the exchange of molecules with their environment. The strong barrier function of membranes has made it difficult to understand the origin of cellular life and has been thought to preclude a heterotrophic lifestyle for primitive cells. Although nucleotides can cross dimyristoyl phosphatidylcholine membranes through defects formed at the gel-to-liquid transition temperature, phospholipid membranes lack the dynamic properties required for membrane growth. Fatty acids and their corresponding alcohols and glycerol monoesters are attractive candidates for the components of protocell membranes because they are simple amphiphiles that form bilayer membrane vesicles that retain encapsulated oligonucleotides and are capable of growth and division. Here we show that such membranes allow the passage of charged molecules such as nucleotides, so that activated nucleotides added to the outside of a model protocell spontaneously cross the membrane and take part in efficient template copying in the protocell interior. The permeability properties of prebiotically plausible membranes suggest that primitive protocells could have acquired complex nutrients from their environment in the absence of any macromolecular transport machinery; that is, they could have been obligate heterotrophs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号