首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A recessive form of severe osteogenesis imperfecta that is not caused by mutations in type I collagen has long been suspected. Mutations in human CRTAP (cartilage-associated protein) causing recessive bone disease have been reported. CRTAP forms a complex with cyclophilin B and prolyl 3-hydroxylase 1, which is encoded by LEPRE1 and hydroxylates one residue in type I collagen, alpha1(I)Pro986. We present the first five cases of a new recessive bone disorder resulting from null LEPRE1 alleles; its phenotype overlaps with lethal/severe osteogenesis imperfecta but has distinctive features. Furthermore, a mutant allele from West Africa, also found in African Americans, occurs in four of five cases. All proband LEPRE1 mutations led to premature termination codons and minimal mRNA and protein. Proband collagen had minimal 3-hydroxylation of alpha1(I)Pro986 but excess lysyl hydroxylation and glycosylation along the collagen helix. Proband collagen secretion was moderately delayed, but total collagen secretion was increased. Prolyl 3-hydroxylase 1 is therefore crucial for bone development and collagen helix formation.  相似文献   

3.
The syndrome of congenital hypoparathyroidism, mental retardation, facial dysmorphism and extreme growth failure (HRD or Sanjad-Sakati syndrome; OMIM 241410) is an autosomal recessive disorder reported almost exclusively in Middle Eastern populations. A similar syndrome with the additional features of osteosclerosis and recurrent bacterial infections has been classified as autosomal recessive Kenny-Caffey syndrome (AR-KCS; OMIM 244460). Both traits have previously been mapped to chromosome 1q43-44 (refs 5,6) and, despite the observed clinical variability, share an ancestral haplotype, suggesting a common founder mutation. We describe refinement of the critical region to an interval of roughly 230 kb and identification of deletion and truncation mutations of TBCE in affected individuals. The gene TBCE encodes one of several chaperone proteins required for the proper folding of alpha-tubulin subunits and the formation of alpha-beta-tubulin heterodimers. Analysis of diseased fibroblasts and lymphoblastoid cells showed lower microtubule density at the microtubule-organizing center (MTOC) and perturbed microtubule polarity in diseased cells. Immunofluorescence and ultrastructural studies showed disturbances in subcellular organelles that require microtubules for membrane trafficking, such as the Golgi and late endosomal compartments. These findings demonstrate that HRD and AR-KCS are chaperone diseases caused by a genetic defect in the tubulin assembly pathway, and establish a potential connection between tubulin physiology and the development of the parathyroid.  相似文献   

4.
Ichthyoses comprise a heterogeneous group of genodermatoses characterized by abnormal desquamation over the whole body, for which the genetic causes of several human forms remain unknown. We used a spontaneous dog model in the golden retriever breed, which is affected by a lamellar ichthyosis resembling human autosomal recessive congenital ichthyoses (ARCI), to carry out a genome-wide association study. We identified a homozygous insertion-deletion (indel) mutation in PNPLA1 that leads to a premature stop codon in all affected golden retriever dogs. We subsequently found one missense and one nonsense mutation in the catalytic domain of human PNPLA1 in six individuals with ARCI from two families. Further experiments highlighted the importance of PNPLA1 in the formation of the epidermal lipid barrier. This study identifies a new gene involved in human ichthyoses and provides insights into the localization and function of this yet uncharacterized member of the PNPLA protein family.  相似文献   

5.
Robinow syndrome is a short-limbed dwarfism characterized by abnormal morphogenesis of the face and external genitalia, and vertebral segmentation. The recessive form of Robinow syndrome (RRS; OMIM 268310), particularly frequent in Turkey, has a high incidence of abnormalities of the vertebral column such as hemivertebrae and rib fusions, which is not seen in the dominant form. Some patients have cardiac malformations or facial clefting. We have mapped a gene for RRS to 9q21-q23 in 11 families. Haplotype sharing was observed between three families from Turkey, which localized the gene to a 4. 9-cM interval. The gene ROR2, which encodes an orphan membrane-bound tyrosine kinase, maps to this region. Heterozygous (presumed gain of function) mutations in ROR2 were previously shown to cause dominant brachydactyly type B (BDB; ref. 7). In contrast, Ror2-/- mice have a short-limbed phenotype that is more reminiscent of the mesomelic shortening observed in RRS. We detected several homozygous ROR2 mutations in our cohort of RRS patients that are located upstream from those previously found in BDB. The ROR2 mutations present in RRS result in premature stop codons and predict nonfunctional proteins.  相似文献   

6.
Centronuclear myopathies are characterized by muscle weakness and abnormal centralization of nuclei in muscle fibers not secondary to regeneration. The severe neonatal X-linked form (myotubular myopathy) is due to mutations in the phosphoinositide phosphatase myotubularin (MTM1), whereas mutations in dynamin 2 (DNM2) have been found in some autosomal dominant cases. By direct sequencing of functional candidate genes, we identified homozygous mutations in amphiphysin 2 (BIN1) in three families with autosomal recessive inheritance. Two missense mutations affecting the BAR (Bin1/amphiphysin/RVS167) domain disrupt its membrane tubulation properties in transfected cells, and a partial truncation of the C-terminal SH3 domain abrogates the interaction with DNM2 and its recruitment to the membrane tubules. Our results suggest that mutations in BIN1 cause centronuclear myopathy by interfering with remodeling of T tubules and/or endocytic membranes, and that the functional interaction between BIN1 and DNM2 is necessary for normal muscle function and positioning of nuclei.  相似文献   

7.
Mutations within the rhodopsin gene are known to give rise to autosomal dominant retinitis pigmentosa (RP), a common hereditary form of retinal degeneration. We now describe a patient with autosomal recessive RP who is homozygous for a nonsense mutation at codon 249 within exon 4 of the rhodopsin gene. This null mutation, the first gene defect identified in autosomal recessive retinitis pigmentosa, should result in a functionally inactive rhodopsin protein that is missing the sixth and seventh transmembrane domains including the 11-cis-retinal attachment site. We also found a different null mutation carried heterozygously by an unrelated unaffected individual. Heterozygous carriers of either mutation had normal ophthalmologic examinations but their electroretinograms revealed an abnormality in rod photoreceptor function.  相似文献   

8.
9.
10.
We report duplication of the APP locus on chromosome 21 in five families with autosomal dominant early-onset Alzheimer disease (ADEOAD) and cerebral amyloid angiopathy (CAA). Among these families, the duplicated segments had a minimal size ranging from 0.58 to 6.37 Mb. Brains from individuals with APP duplication showed abundant parenchymal and vascular deposits of amyloid-beta peptides. Duplication of the APP locus, resulting in accumulation of amyloid-beta peptides, causes ADEOAD with CAA.  相似文献   

11.
Autosomal dominant distal renal tubular acidosis (ddRTA) is caused by mutations in SLC4A1, which encodes the polytopic chloride-bicarbonate exchanger AE1 that is normally expressed at the basolateral surface of alpha-intercalated cells in the distal nephron. Here we report that, in contrast with many disorders in which mutant membrane proteins are retained intracellularly and degraded, ddRTA can result from aberrant targeting of AE1 to the apical surface.  相似文献   

12.
The past decade has seen great advances in unraveling the biological basis of hereditary ataxias. Molecular studies of spinocerebellar ataxias (SCA) have extended our understanding of dominant ataxias. Causative genes have been identified for a few autosomal recessive ataxias: Friedreich's ataxia, ataxia with vitamin E deficiency, ataxia telangiectasia, recessive spastic ataxia of Charlevoix-Saguenay and ataxia with oculomotor apraxia type 1 (refs. 6,7) and type 2 (ref. 8). Nonetheless, genes remain unidentified for most recessive ataxias. Additionally, pure cerebellar ataxias, which represent up to 20% of all ataxias, remain poorly studied with only two causative dominant genes being described: CACNA1A (ref. 9) and SPTBN2 (ref. 10). Here, we report a newly discovered form of recessive ataxia in a French-Canadian cohort and show that SYNE1 mutations are causative in all of our kindreds, making SYNE1 the first identified gene responsible for a recessively inherited pure cerebellar ataxia.  相似文献   

13.
Congenital hereditary endothelial dystrophy (CHED) is a heritable, bilateral corneal dystrophy characterized by corneal opacification and nystagmus. We describe seven different mutations in the SLC4A11 gene in ten families with autosomal recessive CHED. Mutations in SLC4A11, which encodes a membrane-bound sodium-borate cotransporter, cause loss of function of the protein either by blocking its membrane targeting or nonsense-mediated decay.  相似文献   

14.
Hypophosphatemia is a genetically heterogeneous disease. Here, we mapped an autosomal recessive form (designated ARHP) to chromosome 4q21 and identified homozygous mutations in DMP1 (dentin matrix protein 1), which encodes a non-collagenous bone matrix protein expressed in osteoblasts and osteocytes. Intact plasma levels of the phosphaturic protein FGF23 were clearly elevated in two of four affected individuals, providing a possible explanation for the phosphaturia and inappropriately normal 1,25(OH)2D levels and suggesting that DMP1 may regulate FGF23 expression.  相似文献   

15.
Hypertriglyceridemia is a hallmark of many disorders, including metabolic syndrome, diabetes, atherosclerosis and obesity. A well-known cause is the deficiency of lipoprotein lipase (LPL), a key enzyme in plasma triglyceride hydrolysis. Mice carrying the combined lipase deficiency (cld) mutation show severe hypertriglyceridemia owing to a decrease in the activity of LPL and a related enzyme, hepatic lipase (HL), caused by impaired maturation of nascent LPL and hepatic lipase polypeptides in the endoplasmic reticulum (ER). Here we identify the gene containing the cld mutation as Tmem112 and rename it Lmf1 (Lipase maturation factor 1). Lmf1 encodes a transmembrane protein with an evolutionarily conserved domain of unknown function that localizes to the ER. A human subject homozygous for a deleterious mutation in LMF1 also shows combined lipase deficiency with concomitant hypertriglyceridemia and associated disorders. Thus, through its profound effect on lipase activity, LMF1 emerges as an important candidate gene in hypertriglyceridemia.  相似文献   

16.
Osteopetrosis includes a group of inherited diseases in which inadequate bone resorption is caused by osteoclast dysfunction. Although molecular defects have been described for many animal models of osteopetrosis, the gene responsible for most cases of the severe human form of the disease (infantile malignant osteopetrosis) is unknown. Infantile malignant autosomal recessive osteopetrosis (MIM 259700) is a severe bone disease with a fatal outcome, generally within the first decade of life. Osteoclasts are present in normal or elevated numbers in individuals affected by autosomal recessive osteopetrosis, suggesting that the defect is not in osteoclast differentiation, but in a gene involved in the functional capacity of mature osteoclasts. Some of the mouse mutants have a decreased number of osteoclasts, which suggests that the defect directly interferes with osteoclast differentiation. In other mutants, it is the function of the osteoclast that seems to be affected, as they show normal or elevated numbers of non-functioning osteoclasts. Here we show that TCIRG1, encoding the osteoclast-specific 116-kD subunit of the vacuolar proton pump, is mutated in five of nine patients with a diagnosis of infantile malignant osteopetrosis. Our data indicate that mutations in TCIRG1 are a frequent cause of autosomal recessive osteopetrosis in humans.  相似文献   

17.
In addition to its activity in nicotinamide adenine dinucleotide (NAD(+)) synthesis, the nuclear nicotinamide mononucleotide adenyltransferase NMNAT1 acts as a chaperone that protects against neuronal activity-induced degeneration. Here we report that compound heterozygous and homozygous NMNAT1 mutations cause severe neonatal neurodegeneration of the central retina and early-onset optic atrophy in 22 unrelated individuals. Their clinical presentation is consistent with Leber congenital amaurosis and suggests that the mutations affect neuroprotection of photoreceptor cells.  相似文献   

18.
Hemoglobin deficit (hbd) mice carry a spontaneous mutation that impairs erythroid iron assimilation but does not cause other defects. Normal delivery of iron to developing erythroid precursors is highly dependent on the transferrin cycle. Through genetic mapping and complementation experiments, we show that the hbd mutation is an in-frame deletion of a conserved exon of the mouse gene Sec15l1, encoding one of two Sec15 proteins implicated in the mammalian exocyst complex. Sec15l1 is linked to the transferrin cycle through its interaction with Rab11, a GTPase involved in vesicular trafficking. We propose that inactivation of Sec15l1 alters recycling of transferrin cycle endosomes and increases the release of transferrin receptor exocytic vesicles. This in turn decreases erythroid iron uptake. Determining the molecular basis of the hbd phenotype provides new insight into the intricate mechanisms necessary for normal erythroid iron uptake and the function of a mammalian exocyst protein.  相似文献   

19.
Genes have a major role in the control of high-density lipoprotein (HDL) cholesterol (HDL-C) levels. Here we have identified two Tangier disease (TD) families, confirmed 9q31 linkage and refined the disease locus to a limited genomic region containing the gene encoding the ATP-binding cassette transporter (ABC1). Familial HDL deficiency (FHA) is a more frequent cause of low HDL levels. On the basis of independent linkage and meiotic recombinants, we localized the FHA locus to the same genomic region as the TD locus. Mutations in ABC1 were detected in both TD and FHA, indicating that TD and FHA are allelic. This indicates that the protein encoded by ABC1 is a key gatekeeper influencing intracellular cholesterol transport, hence we have named it cholesterol efflux regulatory protein (CERP).  相似文献   

20.
Congenital fibrosis of the extraocular muscles type 1 (CFEOM1; OMIM #135700) is an autosomal dominant strabismus disorder associated with defects of the oculomotor nerve. We show that individuals with CFEOM1 harbor heterozygous missense mutations in a kinesin motor protein encoded by KIF21A. We identified six different mutations in 44 of 45 probands. The primary mutational hotspots are in the stalk domain, highlighting an important new role for KIF21A and its stalk in the formation of the oculomotor axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号