首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
通过微生物-类Fenton氧化联合技术提高水溶液中萘的降解.实验结果表明:投加量为200 mg·L-1的50 mL萘溶液经纺锤芽孢杆菌(BFN)降解96 h后,萘的去除率达100%,而溶液中COD的去除率仅为59.4%,说明溶液中还存在萘的降解中间产物.在纳米零价铁(nZVI)投加量为1.0 g·L-1,H2O2为10mmol·L-1,pH为3.0,温度35℃的优化条件下,对BFN降解40 h后的溶液进行类Fenton氧化,溶液COD的去除率达到86.7%.最终,微生物-类Fenton氧化联合法对200 mg·L-1萘溶液的COD总去除率高达91.6%.  相似文献   

2.
以活性艳红KD-8B溶液作为模拟印染废水,采用Fenton试剂法对其进行催化降解.考察了体系初始pH值、H2O2和FeSO4的投加量以及反应时间等因素对模拟废水的色度及COD去除率的影响,优化了反应条件.实验确定最佳反应条件为:室温下,pH=2.5,[Fe2+]=3.0 mmol/L,[H2O2]=39.2 mmol/L,反应时间40 min,30 mg/L的模拟染料废水脱色率和COD去除率分别达到96.6%和86.7%.Fenton试剂与厌氧微生物处理相结合的处理方式,可以显著提高模拟废水的色度和COD去除率,均达98%以上,尤其COD的去除率比单纯采用厌氧生物法和Fenton试剂法分别高出34.6%和13.1%.  相似文献   

3.
超声/Fenton试剂氧化耦合处理染料废水   总被引:1,自引:0,他引:1  
采用超声/Fenton试剂氧化耦合的方法对模拟染料废水活性红2进行降解处理研究。实验结果表明,仅用超声处理降解率为5%左右,仅用Fenton试剂处理降解率为45%左右,而两者联合处理降解率可达90%以上。超声/Fenton试剂耦合法明显优于二者的简单叠加,此反应符合二级反应动力学方程。同时探讨了超声功率、溶液初始pH值、Fe2+和H2O2投加量等因素对活性红2降解的影响。结果表明,溶液pH值对降解率影响显著,低pH值有利于降解。降解率分别随超声功率和FeSO4投加量的升高而升高,但当FeSO4浓度大于0.045mmol/L时,降解率增大趋势不明显。而H2O2则存在一个最佳投加量。  相似文献   

4.
研究了3种纳米铁系金属制剂(nZVI、nZVI/Ni、nZVI/Pd)在类Fenton氧化法中对水中2,4-二氯苯酚(2,4-DCP)降解效率的影响,同时与纳米铁系金属制剂还原脱氯降解2,4-DCP效果比较.结果表明:1.0 g.L-1Fe、100 mg.L-12,4-DCP,反应180 min,nZVI,nZVI/Ni,nZVI/Pd和Fe2+对水中2,4-DCP去除率分别为6.48%,6.80%,15.95%和5.02%;而在类Fenton氧化法中,nZVI,nZVI/Ni,nZVI/Pd和Fe2+对2,4-DCP去除率分别是57.87%,34.23%,27.94%和19.61%,清楚表明纳米双金属有催化还原脱氯活性,但在类Fenton法中,由于纳米双金属的催化活性导致H2O2分解,使得nZVI更有利于类Fenton氧化降解2,4-DCP.SEM、EDS和XRD表征说明:由于Fe2+溶出,nZVI在类Fenton反应前后的表面微观结构发生微小变化;FTIR与TOC(矿化率30.71%)结果进一步证明2,4-DCP被氧化降解.此外,条件实验发现pH和2,4-DCP初始质量浓度对类Fenton法降解2,4-DCP有较大的影响,其氧化降解过程符合伪一级动力学,是一个扩散控制过程.  相似文献   

5.
研究了3种纳米铁系金属制剂(nZVI、nZVI/Ni、nZVI/Pd)在类Fenton氧化法中对水中2,4-二氯苯酚(2,4-DCP)降解效率的影响,同时与纳米铁系金属制剂还原脱氯降解2,4-DCP效果比较.结果表明:1.0 g· L-1 Fe、100 mg·L-12,4-DCP,反应180 min,nZVI,nZVI/Ni,nZVI/Pd和Fe2+对水中2,4-DCP去除率分别为6.48%,6.80%,15.95%和5.02%;而在类Fenton氧化法中,nZVI,nZVI/Ni,nZVI/Pd和Fe2+对2,4-DCP去除率分别是57.87%,34.23%,27.94%和19.61%,清楚表明纳米双金属有催化还原脱氯活性,但在类Fenton法中,由于纳米双金属的催化活性导致H2O2分解,使得nZVI更有利于类Fenton氧化降解2,4-DCP.SEM、EDS和XRD表征说明:由于Fe2+溶出,nZVI在类Fenton反应前后的表面微观结构发生微小变化;FTIR与TOC(矿化率30.71%)结果进一步证明2,4-DCP被氧化降解.此外,条件实验发现pH和2,4-DCP初始质量浓度对类Fenton法降解2,4-DCP有较大的影响,其氧化降解过程符合伪一级动力学,是一个扩散控制过程.  相似文献   

6.
通过实验研究利用纳米铁活化过硫酸盐产生硫酸根自由基(·SO4-),降解染料废水中的酸性品红.通过实验研究了纳米铁的加入量、过硫酸钾的浓度、p H值、温度等因素随时间变化对酸性品红去除率的影响.结果表明:酸性品红的去除率随反应时间的延长而升高,30 min后基本趋于稳定;当酸性品红溶液初始浓度为50 mg/L时,在p H值为6.0、反应温度为80℃、过硫酸钾浓度为0.23 g/L、纳米铁浓度为0.13 g/L的条件下,酸性品红降解效果最佳,去除率可达99.7%.  相似文献   

7.
某企业将汽车4S店回收的油水混合物,经过蒸馏得到的最轻组分,即轻油废水,其COD值高,气味重。采用絮凝剂、铁碳微电解、Fenton试剂与DSA电化学法多级复合方法,通过单因素试验与正交试验,确定了絮凝剂最佳的量(聚合氯化铝浓度5%∶180 mL·L~(-1)、聚丙烯酰胺浓度1%∶4 mL·L~(-1)),在加入絮凝剂的条件下,COD_(cr)去除率可达到38.5%;铁碳微电解的最佳反应条件为铁碳投加量为30 g·L~(-1),铁碳质量比为1∶1,反应时间为1.5 h,pH为5,此时COD_(cr)去除率可达到61.5%;铁碳微电解/过氧化氢类Fenton法的最佳反应条件为过氧化氢(30%)167 mL·L~(-1),pH为5,反应时间为0.5 h,此时COD_(cr)去除率可达到85.4%;DSA电化学法电解3 h,总的COD_(cr)去除率可达到92.31%。  相似文献   

8.
以Fenton(Fe^3+/H2O2)光催化降解草甘膦废水,跟踪体系化学需氧量(Chemical Oxygen Demand,COD),研究了不同条件下(光源、试剂浓度和酸度等)废水光催化氧化特性及光催化反应条件.探讨了在太阳光及紫外光照射条件下Fenton试剂组分Fe^3+与H2O2不同投料比、投料量、介质酸度对光催化降解废水的影响.结果表明,利用太阳光、紫外光能显著提高废水降解速率;太阳光照射条件下,Fe^3+/H2O2为1:10投量比,pH=3时,对废水COD降解效果最佳,COD去除率达82%.  相似文献   

9.
间硝基苯胺的催化降解动力学研究   总被引:1,自引:0,他引:1  
研究了Fenton试剂催化作用下间硝基苯胺的降解反应,考察了影响降解的一些因素.在适宜的实验条件下,间硝基苯胺的降解去除率可达97.5%以上.用一元线性回归方程,对不同氧化降解时间后间硝基苯胺的相对残余浓度对反应时间的相关性进行了定量分析,间硝基苯胺的催化氧化降解符合一级反应动力学模式,得到了该反应的表观速率常数和活化能.利用紫外光谱对降解反应机理进行了初步探讨。  相似文献   

10.
采用Fenton氧化的方法对湿法腈纶废水二级生化出水进行深度氧化处理.通过单因素实验考察了Fenton试剂投加量、初始pH值及反应时间对该废水处理效果的影响.研究表明,ρH2O2为300mg/L,ρFe2+为300 mg/L,反应初始pH值为3.0,反应时间为120 min时,Fenton氧化反应对COD达到最大去除率57%.另外,通过FT-IR和三维荧光光谱分析探讨了该废水有机污染物在Fenton氧化过程中的去除规律.结果表明,生化出水中某些难降解芳香性物质可以被Fenton试剂氧化分解,废水的可生化性得到提升.  相似文献   

11.
活性炭负载纳米零价铁去除溴酸盐的研究   总被引:1,自引:0,他引:1  
实验采用液相还原法制备活性炭负载纳米零价铁材料(nZVI/AC),并利用X射线衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)等对其结构进行表征.考察了不同反应条件下nZVI/AC对BrO3-的去除效率,并研究其去除机理.结果表明nZVI/AC具有很高的表面反应活性,且nZVI和活性炭(AC)之间存在协同作用. BrO3-的去除效率随 pH 值的减小而增大, 共存离子NO3-和SO42-对其去除率影响不大但降低了去除速率.机理分析表明BrO3-被nZVI/AC吸附而使局部BrO3-浓度升高,并被nZVI迅速还原为无毒的Br-.  相似文献   

12.
尽管纳米零价铁(nZVI)能够有效地去除甲硝唑(MNZ),但是仍然存在矿化率低的问题. 本文,合成了纳米零价铁,研究了H2O2投加量对甲硝唑及其总有机碳(TOC)去除的影响. 结果表明,在nZVI和H2O2的共同作用下不仅可以进一步加速甲硝唑的去除速率,而且其TOC的去除率也明显提高.当双氧水投加量为0.55g/L,TOC的去除率为45.87%,约为单独纳米零价铁的18倍. 相同反应条件下,与传统芬顿法相比,nZVI/H2O2体系下甲硝唑及其TOC去除率,分别约为Fe2+/H2O2芬顿体系的1.5倍和7.1倍. 因而,双氧水与纳米零价铁协同作用,不仅进一步加速了纳米零价铁对甲硝唑去除速率,而且还有效地提高了有机物的矿化率.  相似文献   

13.
硫化纳米零价铁对五氯苯酚的脱氯及其增强反应   总被引:1,自引:0,他引:1  
硫化作用可以提高纳米零价铁(nZVI)的催化活性.利用硼氢化物还原法合成了硫化钠米零价铁(S-nZVI),采用比表面积(BET)、X射线衍射(XRD)、扫描电镜(TEM)、傅立叶变换-红外光谱(FT-IR)和X射线光电子能谱(XPS)等方法对材料进行了物理化学性质的表征,应用高效液相色谱仪和离子色谱仪研究了S-nZVI对五氯苯酚(PCP)的脱氯性能.结果表明:与nZVI相比,S-nZVI在聚集体形态和孔隙率上发生明显改变;不同n(Fe2+)/n(S2-)、溶液pH、S-nZVI的老化以及S-nZVI的重新硫化活化对S-nZVI催化PCP的脱氯均有重要的影响;PCP脱氯效率在n(Fe2+)/n(S2-)=60时达到最大;S-nZVI对PCP的还原转化率随溶液pH(5~8)的升高而显著增加;老化的S-nZVI对PCP的降解性能降低,归因于该老化材料的结构发生了变化;而重新硫化活化产生的FeS层可以减小S-nZVI表面的钝化,从而延长S-nZVI的寿命.文中研究对拓展纳米零价铁的应用和环境污染物治理方面具有一定的参考价值.  相似文献   

14.
采用合成的针铁矿为催化剂与H2O2构成非均相Fenton试剂,开展对盐酸四环素(TC)的氧化分解特征及其动力学研究.考察pH、H2O2 浓度、催化剂投加量、TC初始浓度、温度对TC氧化分解过程的影响.研究结果表明,在优化条件下,针铁矿催化对TC的Fenton氧化分解效果明显,240 min后氧化分解率达到97.2%.而且,针铁矿氧化分解TC的反应仍主要是通过?OH作用, 因为加入叔丁醇自由基捕获剂后,TC的氧化分解率明显降低.此外,动力学模型拟合结果表明,针铁矿表面催化氧化分解TC是符合准一级动力学反应(R2>0.97),其表观活化能为Ea=31.86 kJ/mol.可见,该氧化分解反应表观活化能相对比较低,说明该反应比较容易进行,温度升高也有助于提高反应速率.  相似文献   

15.
为了将Fenton氧化技术氧化能力强的优势引入到硝基苯污染地下水的原位化学修复中,通过实验模拟在地下环境温度为8~10℃、pH为中性条件下,以含水层介质中铁为催化剂的类Fenton技术去除地下水中硝基苯的过程,比较不同浸提剂对含水层介质中铁的浸提效果,并对氧化硝基苯的反应中自由基生成规律和催化氧化机理进行研究。研究结果表明:浸提剂强化了介质中各形态铁的释放,浸提作用存在滞后性,浸提36 h后铁在浸提液中浓度达到峰值;浸提剂DCB对介质中Fe3+和Fe2+的浸提效率最高,分别为62.92%和30.17%。催化氧化反应中硝基苯与H2O2的最佳摩尔比为1:200,该条件下硝基苯去除率最大为80.2%;催化氧化反应过程中HO.的变化可分为3个阶段,即0~30 min的快速生成阶段,30~120 min的生成速率降低阶段和120~240 min的稳定阶段。  相似文献   

16.
赤泥是制铝工业排放的强碱性固体废弃物,利用改性赤泥制备类芬顿催化剂可以实现赤泥资源化利用。以酸化改性赤泥为载体,采用浸渍法制备了负载氧化钴催化剂。以罗丹明B为目标物,研究了酸化改性赤泥负载氧化钴催化剂活化过一硫酸盐(peroxymonosulfate,PMS)处理罗丹明B的性能,考察了催化剂用量、PMS浓度、罗丹明B初始浓度以及反应温度的影响。结果表明,在催化剂用量为0.05 g/L、PMS浓度为0.1 mmol/L、溶液初始pH为4.8、反应温度为65 ℃、罗丹明B质量浓度为10 mg/L、反应时间为50 min的条件下,罗丹明B的去除率达到95.9%。淬灭实验结果表明,反应体系中同时存在SO4 、·OH和单线态氧1O2,其中1O2的氧化反应起主导作用。4次循环实验后罗丹明B的去除率仍能维持在80.0%以上。  相似文献   

17.
采用活性炭(AC)填充型电化学反应器模拟甲基橙废水进行实验研究,分析不同阳极类型对甲基橙废水色度和化学需氧量(COD)去除效率的影响.实验结果显示,PbO2/Ti阳极较RuO2/Ti、IrO2-Ta2O5/Ti阳极对甲基橙废水具有更好的脱色及COD降解效率,经150min电催化氧化,色度及COD去除率分别可达98.14%和54.22%.在此基础上,采用单因素实验方法,研究甲基橙初始浓度、电解质质量浓度及电流密度对甲基橙废水电催化氧化效率的影响,并计算不同电流密度下体系的电流效率(ACE)及能耗(Esp).结果表明,在甲基橙初始浓度200mg/L,电解质质量浓度3%,电流密度30A/m2时,色度及COD去除率最高达98.89%和55.28%,ACE最高为65.86%,能耗最低为COD:11.19kWh/kg.  相似文献   

18.
Nanoscale zero-valent iron (nZVI) particles are increasingly being investigated in removing aqueous contaminants. Here, we have demonstrated its inactivation and magnetic removal of bacteria and endotoxins from environmental wastewater samples. Varying dosages (10–1,000 μL) of 0–6 days aged nZVI with a concentration of 5 mg/mL for 2 mL wastewater samples were tested, and relevant removal efficiencies were determined using culturing method for bacteria and limulus amebocyte lysate (LAL) for endotoxins. The supernatants of wastewater samples after reacting with nZVI and subsequent magnetic separations were subjected to spectroscopic, qPCR and DGGE analysis. Overall, high magnetic bacterial removal efficiencies were observed up to 3–4 logs for 1 mL nZVI, while the removal efficiencies decreased sharply down to 0.5 log for 10 μL nZVI. qPCR and DGGE results revealed that higher dosages of nZVI caused severe bacterial cell membrane ruptures, releasing significant amounts of DNA up to 107–108 gene copies/mL when 1 mL nZVI was used. Richer DGGE patterns were observed for higher nZVI dosages. In addition, regardless of the dosages (10–1,000 μL) we have observed more than 90 % removal of endotoxins from the wastewater samples. The described technology has great promise to be used as a point-of-use water purification solution for various purposes.  相似文献   

19.
应用纳米零价铁(nZVI)富集水体中的铀不但能够回收珍贵的铀资源,同时还可以避免放射性物质对环境的污染.研究结果表明纳米零价铁可快速高效地分离水体中的铀.nZVI对铀的最大富集负荷达到920.16 mg/g,溶液中铀离子的质量浓度可降低至0.03 mg/L以下.弱酸性的水质条件促进nZVI对铀的分离,且分离和还原效率随着nZVI投加量的增加、HCO-3浓度的降低而升高.高浓度的铀离子可水解形成UO3·2H2O沉淀,但Fe0和Fe2+的还原作用是nZVI分离铀离子的主要反应机理.nZVI富集尾矿水中铀资源的过程中可同步去除多种共存重金属污染物.  相似文献   

20.
超声波降解吲哚废水的实验研究   总被引:8,自引:0,他引:8  
研究了吲哚模拟废水在超声波作用下的降解, 并对超声波与电化学协同作用下吲哚的降解规律进行了初步探讨. 考察了废水初始浓度、pH值、处理时间、超声功率、外加催化剂以及声电协同作用下电流密度等因素对吲哚降解的影响. 结果表明, 超声处理吲哚的降解规律符合一级反应; 处理时间越长, 降解率越大; 吲哚初始浓度较低时, 降解率较大; 随着 pH值的增大, 降解率先增大后减小, 在 pH=8左右降解率最大; 降解率随超声功率的增大而增大, 在120 W时达最大值, 随后降低; 加入1 .5 mmol/L H2O2, 对吲哚的降解有较大的促进作用. 在超声波存在下, 电解电流在1 0~2. 2 A范围内, 降解率随电流先增大后减少, 电流为1. 9 A时, 降解率达最大值; 声电化协同作用能提高吲哚的降解率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号