首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
 为研究木质纤维素中不同组分的降解规律,以自制强酸性阳离子交换树脂为催化剂,对秸秆、蒸汽爆破预处理秸秆和微晶纤维素(MCC)进行降解处理研究。考查了催化剂用量、反应温度、反应时间等对秸秆降解反应的影响,比较了纤维素和半纤维素降解效果。研究结果表明,在微波加热条件下,以离子液体[Amim]Cl 为溶剂时,当催化剂与木质纤维素质量比为1∶1、反应温度为140~160℃、反应时间为20~40 min 时,总还原糖收率最高可达92%且半纤维素较纤维素易于降解,在140℃反应30 min,木糖收率最高为47.3%,在160℃反应40 min,葡萄糖收率最高可达45.8%。比较木屑、蒸汽爆破预处理的木屑和微晶纤维素催化降解情况,结果表明,酸性阳离子交换树脂对它们均具有有效的催化效果,其中微晶纤维素降解效果最好。  相似文献   

2.
研究了在水-有机溶剂双液相体系中用离子液体1-甲基-3-(3-磺酸基丙基)咪唑磷钨酸化铬(Cr([MIMPS]3PW12O40)3)催化降解纤维素为5-羟甲基糠醛(5-HMF)的反应;考察了催化剂的类型和用量、溶剂比、反应时间和温度等因素对产物收率的影响.实验结果表明,催化剂用量为0.1 g,反应温度为140℃,反应4 h,水和四甲基二戊酮的体积比为5∶5时,5-HMF和还原糖的收率分别为52.5%和77.8%.  相似文献   

3.
以1-正丁基-3-甲基氯代咪唑为溶剂,酸性离子液体1-正丁基-3-甲基硫酸氢根代咪唑([bmim]HSO4)为催化剂,考察了溶解时间、反应温度、催化剂用量、水量等因素对纤维素水解的影响.结果表明,[bmim]HSO4具有良好的催化效果,当催化剂用量为1.5 g,水量为0.1 mL,反应温度为90℃时,反应80 min,还原糖收率可以达到92%.  相似文献   

4.
采用两种离子液体1-烯丙基-3-甲基氯化咪唑([Amim]Cl)与1-丁基-3-甲基氯化咪唑([Bmim]Cl)分别与微晶纤维素(MCC)解结晶反应20、40与60min.X射线衍射技术(XRD)的分析结果表明,用[Amim]Cl与[Bmim]Cl处理MCC可使其结晶指数从90.2%分别降至72.4%与66.8%.X射线光电子能谱(XPS)的C1s、O1s能谱峰分析显示,离子液体处理后,纤维素大分子中原有的化学键类型并没有明显改变,但相对含量有很大变化, COH 键和 COHO 键的相对含量变化均与结晶指数的变化高度相关,其相关系数分别为0.9990与0.9846.  相似文献   

5.
以1-正丁基-3-甲基氯代咪唑为溶剂,酸性离子液体1-正丁基-3-甲基硫酸氢根代咪唑([bmim]HSO4)为催化剂,考察了溶解时间、反应温度、催化剂用量、水量等因素对纤维素水解的影响.结果表明,[bmim]HSO4具有良好的催化效果,当催化剂用量为1.5 g,水量为0.1 mL,反应温度为90℃时,反应80 min,还原糖收率可以达到92%.  相似文献   

6.
采用玉米秸秆为原料,分别以水、离子液体为溶剂,常规、微波法为辅助加热手段,设计了不同的木质纤维素酸催化预处理方案,以还原糖收率为指标,结果表明以微波加热、离子液体为溶剂的方案为最优。考察了不同种类的酸催化剂、酸质量分数、加热温度、秸秆与离子液体质量比、补水量等因素对秸秆催化转化过程的影响,从而确定了最佳工艺条件为:以离子液体[Bmim]Cl为溶剂,质量分数0.5%H2SO4为催化剂,秸秆与离子液体质量比0.08,补水量与秸秆质量比0.2,于150℃下微波辅助加热。  相似文献   

7.
固体酸Zr(SO4)2·4H2O催化制备生物柴油   总被引:54,自引:0,他引:54  
采用新型固体酸Zr(SO4)2·4H2O替代传统的液体酸、碱催化剂,催化大豆油与甲醇的酯交换反应,制备生物柴油。考察了醇油摩尔比,催化剂用量,反应时间等因素对转化率的影响。采用气相色谱跟踪反应进程中各组分含量分布。优化出该反应最适宜的操作条件为:醇-油摩尔比6∶1,催化剂用量占原料油质量的3%,反应时间6h,反应温度65℃.在此条件下生物柴油的收率可达96.6%。制得的生物柴油与中国0#柴油(GB 252—1994优级品)的主要性能指标接近。  相似文献   

8.
通过烷基化反应和简单的一锅法将醇胺离子液体(TEA)嫁接到氯甲基聚苯乙烯(PS-Cl)微球上,将形成的嫁接型离子液体催化剂(PS-[TEA]I)用于催化CO2和环氧化物生成环状碳酸酯的反应. 采用傅里叶变换红外光谱(FT-IR)和扫描电子显微镜(SEM)表征催化剂的结构和形貌,采用X射线光电子能谱(XPS)、元素分析(EA)和热重分析(TGA)研究了醇胺离子液体的嫁接量和热稳定性. 在环加成反应中,该催化剂无需溶剂和助催化剂,在催化剂用量为0.10 g、温度为120 ℃、CO2压力为2 MPa以及反应时间为4 h的条件下,碳酸丙烯脂(PC)的产率达到93.30%,并且反应后容易分离,可重复使用. 最后提出了羟基形成的氢键可激活环氧化物和I-亲核进攻促进开环的反应机理.  相似文献   

9.
采用两种离子液体1-烯丙基-3-甲基氯化咪唑([Amim]Cl)与1-丁基-3-甲基氯化咪唑([Bmim]Cl)分别与微晶纤维素(MCC)解结晶反应20min、40min与60min。对所得样品首次采用X射线光电子能谱(XPS)的C1s能谱图与O1s能谱图,来分析纤维素解结晶过程中结晶度变化与原子基团的变化。结合X射线衍射技术(XRD),XPS能谱图可以直观地反映纤维素大分子中羟基(-OH)基团的变化情况。  相似文献   

10.
在室温离子液体中,以酸功能化离子液体为催化剂进行纤维素的微波辅助降解,分别考察了二甲基亚砜、催化剂和水对纤维素降解的影响.结果表明:纤维素在1-烯丙基-3-甲基咪唑氯盐中的降解效果优于在1-丁基-3-甲基咪唑氯盐中的降解效果;二甲基亚砜能有效地降低体系的黏度,提高降解的效果;酸功能化离子液体的催化效果与其酸性大小相关;微波640 W下添加0.05 g催化剂,0.04 g水,0.6 g二甲基亚砜,反应60 s,纤维素降解效果最佳.  相似文献   

11.
 采用溶胶-凝胶与溶剂热相结合的方法制备了系列介孔复合光催化剂SO42--H3PW12O40/TiO2 (P123),并对其进行了表征和分析。N2吸附表面分析及扫描电镜(SEM)图片显示,复合催化剂的粒径明显减小,比表面积高达211m2/g,是TiO2的5 倍。紫外漫反射吸收光谱(UV-Vis)显示,与TiO2相比,复合催化剂的吸收光谱发生了明显的红移,且吸收强度明显增强。运用L16(45)的正交实验设计探讨了H3PW12O40负载量、模板剂P123 的添加量、溶液初始pH 值、催化剂加入量以及H2SO4浓度5 个因素对二硝基甲苯(DNT)降解性能的影响,并对正交实验结果进行了直观分析和方差分析。结果表明,该降解过程符合L-H 表观一级反应动力学,在催化剂用量为1.2g/L、H3PW12O40负载量为20%、模板剂P123 的加入量为2g、溶液初始pH 为2、H2SO4的浓度为1mol/L 条件下,经氙灯光源辐照4h 后,DNT 的降解率达到98.7%,DNT 降解的半衰期为0.7162h,取得了良好的光催化效果。  相似文献   

12.
采用液相法制备催化剂Mg1.5PW12O40,Ba1.5PW12O40,Ca1.5PW12O40,Na3PW12O40,K3PW12O40和(NH4)3PW12O40 6种Keggin型磷钨酸盐, 并采用X射线衍射(XRD)和透射电子显微镜(TEM)表征其微观结构和表面形貌. 以250 W高压汞灯为紫外光源, 通过光催化降解甲基橙评估其光催化活性. 实验结果表明: 6种粒子均保持基本的Keggin结构骨架, 属于Keggin[KG*8]结构杂多酸型催化剂; Mg1.5PW12O40,Ba1.5PW12O40和Ca1.5PW12O40降解甲基橙的活性较高, 其中Mg1.5PW12O40的活性最高.  相似文献   

13.
采用浸渍法制备了V2O5质量分数不同的V2O5/Al2O3催化剂,采用Zr对Al2O3载体进行改性并应用于催化甲醇选择性氧化制备二甲氧基甲烷(DMM)的反应中。经X-射线衍射(XRD)、扫描电子显微镜(SEM)、紫外-可见分光光谱(UV-Vis)、傅里叶变换红外光谱(FTIR)、拉曼光谱(Raman)、N2吸附-脱附(BET)、H2程序升温还原(H2-TPR)和NH3程序升温脱附(NH3-TPD)表征分析,结果表明:与单一Al2O3负载的钒基催化剂相比,Zr改性提高了钒氧化物的分散性与稳定性,加强了催化剂中各组分间的相互作用,有效调变了催化剂的酸性和氧化性,进而提高了DMM的选择性。考察了反应条件对甲醇选择性氧化制备DMM的影响,最佳反应温度为175 ℃,经20%V2O5/12%ZrO2-Al2O3催化氧化,甲醇转化率为27.9%,DMM选择性为99.9%。  相似文献   

14.
采用硬模板法制备比表面积大的介孔LaAl1-xNixO3钙钛矿催化剂,将其用于碳中和甲烷干重整领域,研究不同温度下的反应活性。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射仪(XRD)、N2吸附-脱附(BET)、H2程序升温还原(H2-TPR)、热重分析(TGA)对制备的催化剂进行表征。结果表明:LaAl0.5Ni0.5O3催化剂在反应过程中表现出了最优异的活性与稳定性。在反应温度为750 ℃,空速GHSV=36 000 mL/(g·h)的反应条件下, CH4与CO2的转化率分别达到69.8%和81.5%,经25 h稳定性测试后CH4与CO2的转化率仅分别降低2.7%和3.3%。这是由于在H2-Ar混合气还原过程中,LaAl0.5Ni0.5O3催化剂获得了比LaAl0.7Ni0.3O3催化剂更多的Ni活性位点,同时获得了比LaAl0.3Ni0.7O3催化剂更优异的抗烧结、抗积碳性能。  相似文献   

15.
为提高印染废水的高效、快速降解,进行了FeVO4催化降解酸性品红水溶液的研究,考察了双氧水的初始浓度、催化剂用量和反应温度对脱色率和反应速率常数的影响。结果表明:在使用FeVO4作为非均相Fenton催化剂时,酸性品红的氧化降解反应可以使用假一级反应动力学模型进行描述。FeVO4投加量的增加和温度的增大都可以显著提高酸性品红降解反应速率常数。在H2O2浓度为13.6 mmol·L-1,FeVO4投加量为1.0 g·L-1,温度25 ℃条件下,60 min时FeVO4对酸性品红水溶液的降解率达到94.5%。同时,根据不同温度下的反应速率常数,并结合Arrhenius方程计算出酸性品红降解过程的假一级反应的活化能Ea为60.24 kJ·mol–1。为利用多相类Fenton催化剂方法处理含酸性品红的印染废水提供理论依据。  相似文献   

16.
针对辣根过氧化物酶催化过氧化氢(HRP/H2O2)体系存在对污染物降解速度慢的问题,采用2,2′-联氮-双-3-乙基苯并噻唑啉-6-磺酸(ABTS)作为电子转移体,强化HRP/H2O2体系降解吲哚,对不同pH值、ABTS浓度和常见共存水体成分的吲哚降解效能进行研究.通过高效液相色谱-四级杆-飞行时间质谱仪及发光细菌毒性实验,考察吲哚的降解产物及毒性变化.结果表明:在pH值为5.0~11.0的范围内,ABTS可显著强化HRP/H2O2体系降解吲哚,且强化效能随ABTS浓度的增加而增加;常见共存水体成分对吲哚的降解均无显著影响;检测到5种吲哚降解产物,其生物毒性相较于吲哚有所下降.  相似文献   

17.
 多金属氧酸盐作为一种无机金属-氧簇化合物,在抗肿瘤、抗病毒等药物化学领域引起广泛关注。研究了以下5种含5-氟尿嘧啶稀土磷钨酸盐K9(C4H4FN2O22La(PW11O392·18H2O,K9(C4H4FN2O22Ce(PW11O392·23H2O,K9(C4H4FN2O22Nd(PW11O392·25H2O,K9(C4H4FN2O22Sm(PW11O392·11H2O和K9H(C4H4FN2O2)Eu(PW11O392·11H2O(FLnPW,Ln=La、Ce、Nd、Sm、Eu)对HeLa细胞凋亡和周期的影响,以5-氟尿嘧啶为阴性对照,同时比较了含5-氟尿嘧啶磷钨酸盐K11C4H4FN2O2(PW11O39)·7H2O(FPW)及磷钨酸H3PW12O40(PW)的生物活性。细胞形态检测表明,化合物作用于HeLa细胞后均出现明显凋亡形态特征,细胞核染色质呈高度浓缩和边缘化现象(PW除外)。流式细胞周期检测表明,化合物作用后HeLa细胞均出现S期阻滞,与5-氟尿嘧啶相比,FPW作用后S期阻滞增强,而FCePW、FNdPW和FEuPW组同时出现S期和G2/M期阻滞。流式细胞检测表明,化合物诱导HeLa细胞发生凋亡(PW除外),且诱导凋亡活性顺序为FLnPW > FPW > 5-氟尿嘧啶。Caspase 3检测表明,化合物作用后Caspase 3活性增强(PW除外),活性顺序与凋亡活性顺序相同,其中FCePW组和FEuPW组Caspase 3相对活性显著增强。实验结果表明,所考查化合物(PW除外)能诱导细胞周期阻滞、诱导凋亡活性以及激活Caspase 3,且FLnPW的活性均高于FPW和5-氟尿嘧啶,而PW只能使肿瘤细胞发生坏死,说明5-氟尿嘧啶和稀土元素对化合物的抗肿瘤活性发挥关键作用,FLnPW可能是通过诱导细胞周期阻滞以及激活Cas-pase 3细胞凋亡通路,实现显著抑制HeLa细胞增殖。  相似文献   

18.
基于电厂失活催化剂,采用物相分析、化学组分测试、比表面积测量表征手段确定导致V2O5/TiO2失活的原因为As2O3、碱金属中毒,而失活催化剂晶型结构没有发生改变且具有高的比表面积.采用0.01mol/L 的H2C2O4溶液和0.015mol/L的NH3·H2O溶液对催化剂进行洗涤再生处理可将催化剂表面SO3,As2O3,K2O和Na2O质量分数分别降至0.09%,0.05%,0.02%和0.01%,重新负载1.5%质量分数V2O5后催化剂活性得以恢复.负载3%质量分数CuO后催化剂表现出好的低温催化活性,220℃, 250℃, 280℃ 和 310℃下V2O5-CuO/TiO2的NOx转化率分别为62.4%, 82.2%, 90.8%和95.5%.  相似文献   

19.
以H2O2为助剂,对氯化镧溶液通过喷雾热解法制备氢氧化镧的工艺进行了研究,首先通过热力学分析获得了H2O2与氯化镧反应的起始温度为288℃,并进一步研究了热解温度、氯化镧溶液质量浓度、H2O2添加量及载气压力对氢氧化镧转化率的影响.通过氯含量测定,XRD及SEM分析,获得了优化的工艺条件为:热解温度600℃,氯化镧溶液质量浓度400 g/L,H2O2加入量5%,载气压力0.4 MPa,在此条件下得到了转化率为99.96%的碎片状La(OH)3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号