共查询到19条相似文献,搜索用时 78 毫秒
1.
2.
对于任意正整数m和n,用I(Cm)表示在长为m圈Cm的每个顶点处增添1条悬挂边而得到的图,I(d(v)-1)(Kn)表示在完全图Kn的每个顶点v处增添(d(v)-1)条悬挂边而得到的图.本文确定了I(Cm)的符号边控制数为0,I(d(v)-1)(Kn)的符号边控制数为1/2(3n-n2). 相似文献
3.
设G=(V,E)是一个图,一个双值函数f:■,如果对任意顶点v∈V,均有■成立,则称f为图G的一个符号控制函数。图G的符号控制数定义为■为图G的一个符号控制函数}。通过列举图例验证了以往研究中的部分结果是错误的,并重新确定了两类乘积图C_n×P_3和P_n×P_3的符号控制数。 相似文献
4.
设G=(V,E)是一个非空图,一个函数f:E→{-1,1},如果满足∑e’∈N[e ]f(e’)≥1对于每一条边e∈E(G)均成立,则称f为图G的一个符号边控制函数。图G的符号边控制数记为r’s(G),定义为r’s(G)=min{∑e∈E(G) f(e) | f为图G的一个符号边控制函数}。本文对图的符号边控制函数进行了研究,得到了图的符号边控制数的一个新的下界;并且确定了圆梯P2×Cn的符号边控制数。 相似文献
5.
6.
设G=(V,E)为一个图,如果一个实值函数f∶V→[0,1],对任意u∈V(G),均有f(N[u])≥1成立,则称f为图G的一个Fractional控制函数.图G的Fractional控制数定义为γf(G)=min{f(V)|f为图G的一个Fractional控制函数}.本文给出m≥3,n≥2时乘积图Km×Pn的Fra... 相似文献
7.
8.
令G=(V,E)是一个图,M是边集E(G)的子集,如果有e∈E(G)/M,e至少与M中一条边相连,则称M为图G的边控制集,进一步,若M是匹配,则称M为图G独立边控制集,本文给出关于边控制集的一些结论。(1)设图H,S是两中连勇图,且H,S∈ж,γe(S)=1,M和M′={uv}分别是图H和S的唯一最小边控制集,其中S是图1中的(G1,G2,G3,G4)四个图之一,对任何点x∈V(S)={u,v},y∈V(H)-V(M),令G=H(y=s)S,则G∈ж,(2)如果连通图G≠K2,G∈ж,γe(G)=k,则存在G的两个连通于图H,S和某两个正整数l,m使H∈ж,S∈ж,且γe(H)=k-l,γe(S)=l,G≌H(yi=xi)S,其中l≤i≤m. 相似文献
9.
罗娜娜 《河北师范大学学报(自然科学版)》2020,44(6):461-466
图的度量维数问题是组合优化领域研究的一个热点问题,边度量生成集问题是其一个重要变形.给出了项链图的一个边度量生成集,并证明了其边度量维数为3. 相似文献
10.
证明了:1)图G和H的强乘积图GH的控制数γ(GH)≤γ(G)γ(H),并举例说明此上界是可以达到的;2)若γ(H)=1,则G与H的字典乘积图的控制数γ(G H)=γ(G);若G不含孤立点并且γ(H)≥2,则γ(G H)=γt(G),其中γt表示图的全控制数. 相似文献
11.
若干图的Mycielskian图的边色数 总被引:3,自引:0,他引:3
对图G(V,E),μ(G)称为G的Mycielskian图,若V(μ(G))=V(G)∪{v′|v∈V(G)}∪{w}且w V(G),而E(μ(G))=E(G)∪{uv′|uv∈E(G)}∪{wv′}.研究了路、圈、扇、轮图的Mycielskian图的边色数. 相似文献
12.
两类4-正则循环图的邻点可区别全色数 总被引:4,自引:0,他引:4
设G是阶数不小于2的连通图,则其邻点可区别全染色是指G中任意两个相邻的顶点有不同的颜色和色集合,且任意相邻的两条边及一个顶点与其关联边的颜色也不相同.给出了两类邻接矩阵的第一行分别为(0,1,0,1,0,…,0)和(0,1,0,0,1,0,…,0)的循环图的邻点可区别金色数. 相似文献
13.
管梅 《合肥学院学报(自然科学版)》2014,24(3):3-7
设G=(V,E)是一个简单图,在图G的所有符号(全)控制族中,基数最大的符号(全)控制族包含的符号(全)控制函数的数目称为是图G的符号(全)控制划分数.首先给出图的符号控制划分数的Nordhaus-Gaddum型结果,接下来,又给出了图的符号全控制划分数的Nordhaus-Gaddum型结果. 相似文献
14.
设μ1(G)表示一个图G的Mycielski图.广义Mycielski图μm(G)是Mycielski图μ1(G)的自然推广.研究广义Mycielski图μm(G)的边染色问题,运用换色技巧证明了:若G是不同于K2的连通简单图,则对任何m≥2,μm(G)是第一类的,即边色数等于最大度.推广了现有关于Mycielski图的边色数的相关结果. 相似文献
15.
讨论了完全二部图、完全图和完全多部图的Mycielski图的星全染色问题,得到了它的星全色数. 相似文献
16.
17.
全染色猜想在分数全染色的意义下是成立的,在此基础上,我们进一步研究了几类特殊图的分数全色数,如圈、完全图、完全二部图、平衡完全r-部图。 相似文献
18.
若干积图的点可区别边染色 总被引:2,自引:0,他引:2
证明了:(1)两个n(n2)阶完全图的积图的点可区别边色数为2n. (2)对阶至少是3的完全图Kn,若χ′vd(G)=Δ(G),则χ′vd(G×Kn)=n+Δ(G).(3)若χ′vd(Gi)=Δ(Gi),i=1,2,则χ′vd(G1×G2)=Δ(G1)+Δ(G2). 相似文献
19.
几类有趣图的邻点可区别全染色 总被引:1,自引:0,他引:1
在正常全染色的定义下,使得任两相邻顶点的色集不同,这就是邻点可区别全染色.顶点v的色集是v的颜色其与及v关联的所有边的颜色.我们给出了几类有趣图的邻点可区别全色数. 相似文献