首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 188 毫秒
1.
地震作用下尾矿坝中颗粒应力、应变曲线分析是整个尾矿坝安全稳定性分析中的重要组成部分.通过对PFC2D软件在尾矿坝安全特性上的应用研究,运用颗粒流离散元方法,对某尾矿坝进行了数值模拟,为PFC的工程应用提供新实例.模拟结果表明:地震作用下尾矿坝的整体滑移部分多为下部首先产生较大位移之后上部开始滑动,从而由局部滑移造成坝体整体滑移;初期坝和细粒砂相对于基岩更易产生滑移,且滑移位移明显,细粒砂相对于粗粒砂较易产生位移;尾矿坝的剪切应变随着地震荷载的变化而变化且最大变化处位于坡脚处,位移云图出现分层破坏面表明该尾矿坝已经处于破坏状态.通过分析尾矿坝数值模型,从而对地震作用下的尾矿坝安全性能做出判断.  相似文献   

2.
溪洛渡拱坝蓄水初期出现了较为明显的谷幅收缩现象,且量值远超同类工程,有必要开展谷幅收缩变形对拱坝变形及应力状态的影响研究。针对坝体已经历的三次完整蓄水-消落过程,对各条测线谷幅变形进行函数拟合,在此基础上,计算了各个蓄水-消落周期下,正常蓄水、死水位工况下坝体变位和坝体应力,对比分析了考虑谷幅收缩变形对大坝位移、应力及分布规律的影响。结果表明,正常蓄水工况下,在变形方面,一定幅度的谷幅变形引起坝体向上游变形趋势,可以部分抵消水沙压力造成的坝体向下游变形作用,使大坝变形减小;在应力方面,一定幅度的谷幅收缩会大大降低上游坝面坝踵拉应力和下游面坝体压应力,改善大坝受力状态。死水位时,随着谷幅收缩的加大,上游面主压应力持续增加,下游坝面主压应力先减小后增大,并在下游面将产生一定拉应力。研究表明,当前谷幅变形作用下,大坝具有较大的安全裕度。在预测极限谷幅状态下(VDL04测线谷幅收缩70.04 mm),溪洛渡高拱坝应力应变处于安全状态。  相似文献   

3.
溪洛渡拱坝蓄水初期出现了较为明显的谷幅收缩现象,且量值远超同类工程,有必要开展谷幅收缩变形对拱坝变形及应力状态的影响研究。针对坝体已经历的三次完整蓄水-消落过程,对各条测线谷幅变形进行函数拟合,在此基础上,计算了各个蓄水-消落周期下,正常蓄水、死水位工况下坝体变位和坝体应力,对比分析了考虑谷幅收缩变形对大坝位移、应力及分布规律的影响。结果表明,正常蓄水工况下,在变形方面,一定幅度的谷幅变形引起坝体向上游变形趋势,可以部分抵消水沙压力造成的坝体向下游变形作用,使大坝变形减小;在应力方面,一定幅度的谷幅收缩会大大降低上游坝面坝踵拉应力和下游面坝体压应力,改善大坝受力状态。死水位时,随着谷幅收缩的加大,上游面主压应力持续增加,下游坝面主压应力先减小后增大,并在下游面将产生一定拉应力。研究表明,当前谷幅变形作用下,大坝具有较大的安全裕度。在预测极限谷幅状态下(VDL04测线谷幅收缩70.04 mm),溪洛渡高拱坝应力应变处于安全状态。  相似文献   

4.
某工程在软弱基础上修建的碾压混凝土拱坝坝高大于100m,基础软弱,应力和位移大,尤其是坝肩向下游位移大。提出设置推力墩新结构来增强拱座受力,限制其变形。示例对水压荷载作用下坝体的应力和位移进行三维仿真分析,表明仅设置30m长的推力墩能消减50%的坝体下游面(水压荷载)拱向拉应力;位移减小20%;坝肩基岩几乎处于微压状态,水压应力向推力墩转移,加大坝基底面减小坝体沉陷。由于推力墩结构减小了拱跨度,增强了拱坝的整体性,分担了主要的坝肩荷载,可使拱坝应力得到改善,位移得到控制。  相似文献   

5.
为分析拱坝坝体与坝肩稳定性,通过建立三维非线性有限元计算模型,计算了基本荷载组合、特殊荷载组合两种工况下拱坝的位移和应力.依据数值计算结果,绘制了位移等及应力等值线,采用有限元分析法分析了坝体应力结果,并从超载安全系数法和点强度储备安全系数法两个角度探讨了坝肩岩体的稳定性,结果表明:1)拱坝的最大位移发生在顺流方向,最大位移值为8.95 mm;2)正常蓄水水位和校核洪水水位时坝体的最大拉、压应力均满足容许应力要求;3)坝肩岩体的安全系数为3.8,满足安全要求.  相似文献   

6.
为研究夕昌水库混凝土面板堆石坝内的应力应变分布规律,对该坝进行了施工及运行期的参数化有限元仿真。仿真结果表明:施工期和运行期的最大沉降量分别为28.9 cm和36.6 cm,发生于标准断面约1/2处;施工期和运行期两侧坝体产生的水平位移,由于水压力的平推作用差别较大;竣工期坝体标准断面第一主应力最大值分别为1.46 MPa和1.56 MPa,第三主应力最大值分别为0.51 MPa和0.62 MPa。仿真结果基本符合混凝土面板堆石坝施工及运行期的应力应变规律。  相似文献   

7.
混凝土重力坝坝踵在运行期间易出现拉应力,是坝体的薄弱区域。为研究该区域的水力劈裂问题,采用四点弯曲弯矩+高水压的联合施载方式,模拟混凝土重力坝坝踵受拉状态下的水力劈裂破坏过程。基于不同弯矩与水压值组合,研究坝踵因施工应力出现初始裂缝情况下的水力劈裂问题。结果表明,裂缝发展过程中,混凝土试件的应变可分为线性段及指数段,当应变进入指数段时,试样临近破坏;较小的荷载增量即会打破稳态,促使裂缝失稳扩展;劈裂水压与拉应力存在叠加效应,若最值作用位置相同,裂缝尖端应力集中现象明显,易引起水力劈裂破坏,若作用位置不同,则受拉截面应变分布较均匀,较大限度地发挥了混凝土受拉截面的抗劈拉能力,减弱了水力劈裂作用。  相似文献   

8.
以钢筋混凝土护面加固的丰满重力坝为研究对象,采用基于ANSYS整体式钢筋混凝土有限元法,建立代表性溢流坝段三维模型分析大坝加固前后的静动力特性.结果表明:护面加固后坝顶最大静位移量减少约14%,地震载荷下最大动位移量减少约6%;加固后地震响应更趋向平缓,峰值响应的出现迟于加固前,对抗震是有利的,但坝体顶部正向地震响应会因护面加固后刚度和质量增加而增大;护面加固能够显著地改善坝体顶部和下游坝肩部位老混凝土的应力状态,但对坝体上游坝面和坝踵部位的应力状态基本没有影响.钢筋混凝土护面对坝体抗震能发挥一定作用,但应重视坝肩和坝顶增大的动力响应对护面抗震的不利影响.  相似文献   

9.
以某混凝土面板堆石坝为例,进行应力场和温度场的耦合计算,分析坝体和面板的应力变形,以及坝体变形对面板的影响.结果显示:坝体的最大水平位移和最大沉降发生在坝体上游面中部;坝体最大主应力发生在坝体底部,且随季节温度升高而增大,坝体最小主应力发生在坝顶防浪墙,坝体内部无拉应力;面板最大拉应力发生在距坝底1/2处,位于正常运行期的库水位以下,混凝土性能易弱化导致面板损毁,所以面板开裂在此处发生的可能性最大.  相似文献   

10.
重力坝加高后会带来坝踵应力恶化、新老坝体结合面开裂及新混凝土表面裂缝等问题.针对兰溪桥重力坝加高工程自身特点,运用三维有限元方法,对加高后的温度、应力进行了精细化仿真计算分析.计算结果表明,加高后坝踵应力并未恶化;水库蓄水时,在坝体上游面短期内会产生较大拉应力;新老坝体结合面应力主要是法向正应力和沿坝坡方向的切应力;新浇坝体在采取适当温控措施后可以满足防裂要求.综合各方面考虑,兰溪桥重力坝常态混凝土加高方案是可行的.  相似文献   

11.
针对中国山区河道中小型拱坝在不开挖覆盖层下坝基渗透变形问题,以金盆电站拱坝为例,采用三道防渗墙联合高压旋喷灌浆的措施进行基础处理.运用Comsol Multiphysics数值模拟方法,对拱坝的坝体和底部防渗墙进行三维有限元应力研究.结果表明:在各种控制工况下,坝体及坝基防渗墙在上、下游面最大拉应力分别为0.6、0.55 MPa,最大压应力分别为5.0、7.0 MPa,应力分布均在合理范围0.8~8.0 MPa以内.将该措施下的大坝位移情况与观测数据分析对比,得出位移耦合模拟结果与实测数据坝顶测点LD1-LD2、坝底LD3-LD4二者的水平位移相对误差仅为(5.9%,8.0%)、(5.8%,6.0%);垂直位移相对误差仅为(5.9%,5.8%)、(6.3%,5.8%),各时段坝体变形数值大小均在允许误差10.0%以内,分布规律满足要求,在该措施下大坝处于安全可控.  相似文献   

12.
建基面强度对拱坝应力、变形的影响   总被引:5,自引:0,他引:5  
建基面是传递拱坝和基岩相互作用的纽带,它的强度直接影响基岩对坝体的约束,从而影响坝体的应力和变形,用非线性有限单元法,以设计中的某高拱为例,分析建基面强度对坝体应力和变形的影响,结果表明建基面强度对坝体应力的影响仅限于建基面附近的局部范围,对最大主拉应力的影响要大于对最大主压应力的影响,建基面强度的降低不会无限地增大坝体的应力数值;建基面强度对坝顶位移的影响较小,但对坝底位移(尤其是顺河向相对位移)的影响较大,当建基面强度较低时,坝底顺河向相对位移随建基面强度的降低而增大。  相似文献   

13.
采用三维非线性有限单元法对白鹤滩拱坝进行了3种荷载组合下的非线性分析。结果表明,在基本荷载组合一工况下,坝体上游面有最大主拉应力为6.04 MPa,发生在坝底550 m高程右拱端,下游面有最大主压应力为14.50 MPa,发生在620 m高程左拱端;坝体自重施加方式对坝体应力,尤其是上游面拉应力,有较大的影响;但在基本荷载组合一工况下,坝体自重按整体自重考虑,上游面最大主拉应力6.04 MPa,有限元等效最大主拉应力为3.15 MPa。  相似文献   

14.
Debris flow can cause serious damage,and it is a part of the study of fluid-structure interaction(FSI).FSI analysis was established on the interaction between unsteady flow and the slit-trap dam's vibration,with a coupling bench which can transfer fluid pressure and structure displacement.Debris flow can be seen as the Bingham body of incompressible.Based on ANSYS and CFX softwares,unidirectional and bidirectional coupling methods were used to study the transient interaction between debris flow and dam.The comparison between lateral fluid pressure states under different velocities and the equivalent stresses of the dam under different coupling conditions was made.The result shows that fluid-structure coupling becomes stronger with the increase of flow velocity.The maximum equivalent stress appears at the dam foundation,while the minimum equivalent stress appears at the dam abutment.With the increase of height,the fluid pressure decreases.The fluid pressure based on unidirectional FSI analysis is larger than that based on bidirectional FSI analysis and the maximum appears on the joint of the dam foundation and channel.The maximum equivalent stress of the dam based on the former is less than that based on the latter.  相似文献   

15.
基于有限元等效应力法的拱坝强度设计准则探讨   总被引:5,自引:0,他引:5  
指出了我国现行拱坝设计规范中存在的问题,根据若干已建拱坝的有限元等效应力分析结果,探讨基于有限元等效应力法的应力控制标准,提出了考虑建筑物等级的压应力设计准则和综合拉应力设计准则。  相似文献   

16.
黄土沟谷地区格构式高墩在施工以及使用过程中,由于受到不同因素的影响,其墩身可能会产生一定的偏位。为研究其偏位对墩身受力以及损伤性能的影响,本文以河沟大桥4#高墩为研究对象,利用有限元软件Midas Civil和ABAQUS研究分析了高墩在最不利荷载状态下墩顶的最大偏位值以及偏位后的墩身的受力性能和损伤性能。研究结果表明:最不利荷载作用下墩顶最大偏位为35 cm;当墩顶偏位最大时,墩顶水平推力小于混凝土破坏时的水平推力临界值,此时,墩身受压侧混凝土压应力之比与墩体受拉侧钢筋拉应力之比均小于规范允许上限值,墩身混凝土未发生完全破坏;在墩顶最大偏位位移下,墩身受拉损伤因子相比墩身受压损伤因子较大,墩身受拉损伤比较严重。可见黄土沟谷地区格构式高墩施工应控制墩顶偏位,降低对墩体承载力的消弱。  相似文献   

17.
建立了重力坝结构的有限元分析模型。采用静力理论和动力理论,对坝体进行了静力分析和动力分析,得到了坝体变形图、合位移等值线图、有效应力等值线图、坝体振型图。通过分析可以得到地震载荷对坝体产生的影响,并为坝体的设计提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号