共查询到20条相似文献,搜索用时 9 毫秒
1.
为了进一步提高锂离子动力电池荷电状态(SOC)的估计精度问题,在分析了电池电压、温度、电流和放电电量对电池SOC值的影响后,提出了一种新颖的混沌萤火虫算法(chaos firefly algorithm,CAF)和小波神经网络(WNN)相结合的锂离子动力电池SOC联合估计方法,该方法首次利用于电池SOC值估计中,通过新颖的混沌萤火虫算法优化小波神经网络,加入动量项优化网络的权值和调整修正参数,提高了网络的学习效率和SOC估计精度。克服神经网络进化缓慢并且容易陷入局部最小的缺陷,通过仿真和电池实际工况下实验,结果表明与WNN算法相比,所提出的方法具有更高的预测精度,均方根误差小于2%,验证了这一算法的可行性和有效性。 相似文献
2.
应用滑模观测器方法进行了荷电状态估计的研究.基于改进的Thevenin等效电路模型建立了电池的状态空间模型,设计了一种能改善抖动问题的滑模状态观测器.为分析观测器的稳定性,对模型中的非线性项进行了分析,根据其导数有界的特性,利用拉格朗日中值定理给出了保证观测器收敛的条件,并由此确定观测器的设计参数.并且在Matlab环... 相似文献
3.
针对由静态的电池模型参数而造成的状态估计累计误差、噪声统计特性的时变不确定性等实用化的问题,基于无迹卡尔曼滤波(unscented Kalman filter, UKF)框架设计了一种自适应UKF的电池状态联合估计算法.在无迹变换(unscented transform,UT)时,对量测方程进行准线性化处理,降低了循环迭代过程中的计算开销;利用带遗忘因子的Sage-Husa自适应估计方法对过程噪声的统计特性参数进行递推估计与修正,提高了UKF估计算法的自适应容错能力;实时跟踪滤波的收敛性,若呈发散趋势时,通过自适应衰减因子对误差协方差进行调整以抑制滤波发散,保证了滤波过程的数值稳定性;采用联合估计策略对一阶Thevenim电池欧姆内阻模型参数进行在线更新,以确保动态测试工况下电池模型的准确性,从而提高了电池荷电状态(state of charge,SOC)以及电池健康状态(state of health,SOH)的估计精度.实验与仿真结果验证了该电池状态联合估计算法的可行性与有效性. 相似文献
4.
《西安交通大学学报》2021,(1)
针对单一的等效电路模型难以准确描述全时段的锂离子电池、估计电池荷电状态(SOC)准确度低的问题,提出采用多模模型的锂离子电池荷电状态联合估计算法。利用电化学阻抗谱分析不同SOC下锂离子电池的阻抗分布,并以此构建等效电路模型来描述整个充放电过程中的锂离子电池,得到一种基于变阶RC模型的多模模型。利用贝叶斯定阶准则综合模型的准确度和实用性来确定具体阶数,采用带有遗忘因子的递推最小二乘法对模型参数进行在线辨识,利用扩展卡尔曼滤波算法(EKF)求得锂离子电池的实时SOC。在恒流工况以及动态应力测试工况下,与传统基于一阶RC模型和二阶RC模型的EKF算法进行了多组实验对比。结果表明:采用多模模型的联合算法在不同工况下估计的SOC精度提高了30%以上,并均可在两个迭代周期内追踪到准确值。 相似文献
5.
锂离子动力电池参数辨识与状态估计 总被引:5,自引:0,他引:5
从锂离子动力电池的电流激励-电压响应出发,在改进的FreedomCar电池模型存在的基础上,提出了基于最小二乘法的电池模型参数辨识的方法;根据混合动力汽车的具体应用条件,提出基于电流-时间窗口的SOC(荷电状态)估计方法.该方法已成功应用于电-混合燃料电池轿车"超越三号"的实车运行. 相似文献
6.
为提高安时积分法对荷电状态估计的精度,解决其估计误差随时间不断增大的问题,采用极限学习机算法建立了安时积分法的误差预测模型,该模型以电池工作电流作为输入,对应的安时积分法荷电状态估计误差作为输出,将误差预测模型与安时积分法进行融合,对安时积分法的荷电状态估计值进行校正,形成了安时积分法和极限学习机方法融合的锂离子电池荷电状态在线估计方法.仿真分析结果表明,相比安时积分法,融合方法可有效减小荷电状态估计误差,克服安时积分法估计误差随时间不断增大的问题. 相似文献
7.
为了提高荷电状态(state-of-charge,SOC)估计精度,提出一种基于元素注意门的电池荷电状态递归神经网络,为输入向量的每个特征元素分配不同的重要程度,验证并分析不同神经元数量和隐藏层层数下的测试结果,利用确定的最优参数设置进行不同温度下的电池SOC估算,在不同电池特征参数下对SOC估计任务的重要性进行可视化分析。相同数据集的SOC估计精度表明,提出的网络模型在SOC估计任务中精度有明显提升。 相似文献
8.
电池荷电状态(SOC)的准确估计对延长电池使用寿命、提高电池利用率和保障电池安全性具有重要意义。在不同环境温度下进行了锂离子电池的基本性能试验和动态工况试验,建立了温变双极化等效电路模型。基于该模型,采用H无穷滤波算法代替传统的扩展卡尔曼滤波算法,在无需假设过程噪声和测量噪声均服从高斯分布的前提下,实现了SOC的精确估计。在考虑温变和电池模型存在误差的条件下进行验证,不同温度条件下的SOC估计最大误差保持在±0.03范围内,证明了所提出的SOC估计算法具有较高的温度适应性和鲁棒性。 相似文献
9.
传统电池荷电状态(SOC)估计中常用的扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)方法仅适用于线性系统和高斯条件,虽然粒子滤波(PF)算法能用于非线性和非高斯系统,但PF算法在滤波更新时存在粒子退化现象,使粒子集无法表示实际后验概率分布,导致估计精度降低.采用改进的扩展粒子滤波(EPF)和无迹粒子滤波(UPF)算法对电池SOC进行估计,抑制了粒子权重退化.以Thevenin模型对电池进行建模,利用带遗忘因子的最小二乘方法进行模型参数辨识,结合改进后的滤波算法对电池SOC进行估计.实验结果表明,以UKF为建议密度函数进行重采样的UPF方法平均估计误差为0.71%,低于以EKF为建议密度函数的EPF方法平均误差(1.09%),两种方法的估计误差均小于PF估计误差(1.36%),有效抑制了粒子权重退化. 相似文献
10.
针对电动汽车锂离子动力电池组能量管理中的荷电状态(SOC)预测问题,提出一种根据SOC及电流(SOC-I)计算库仑效率的方法,并建立电池SOC、充放电电流及充放电库仑效率的关系.以无迹卡尔曼滤波(UKF)算法为基础,采用自适应无迹卡尔曼滤波(AUKF)算法预测电池SOC,并将提出的库仑效率计算方法与UKF算法相结合构造了SOC-I-AUKF算法,该算法在预测过程中不断调整库仑效率、系统噪声协方差以及量测噪声协方差,以实现系统状态最优化预测.实验结果表明,SOC-I-AUKF算法有较好的SOC预测效果,与UKF算法相比,其SOC预测绝对误差、相对误差和平均误差水平都有显著提高. 相似文献
11.
针对动力锂电池常用的荷电状态(SOC)估计算法存在的扩展卡尔曼滤波法精度低、无迹卡尔曼滤波法收敛速度慢等问题,在动力锂电池的Randles等效模型的基础上,通过脉冲放电实验对模型参数进行辨识;并设计了一种基于迭代扩展卡尔曼滤波(IEKF)与无迹卡尔曼滤波(UKF)联合估计的SOC估计法。在电池实验平台上设计模拟工况实验,实验分析表明:该算法的SOC初值修正速度快于EKF和UKF,计算量比UKF小,且稳态误差不超过1.5%,相对扩展卡尔曼滤波(EKF)提高了40%,是一个收敛快、计算量少、静差小的迭代估计算法。 相似文献
12.
研究有色噪声下的锂离子电池参数辨识与荷电状态(SOC)估计,并进行硬件在环实验验证.在动力电池模型的参数辨识过程中,利用带遗忘因子的偏差补偿递推最小二乘法进行偏差补偿,提高了有色噪声数据的参数辨识精度.在此基础上,利用自适应扩展卡尔曼算法进行SOC估计,使得滤波算法中的估计结果可以随着噪声统计特性的变化而自适应更新,实现了模型参数和电池状态的联合估计.最后,借助BMS测试系统模拟电池电压电流信息输出,完成了硬件在环实验以验证所提出的方法.实验结果表明,利用所提出算法估计得到的电池端电压和SOC误差分别小于10 mV和0.5%. 相似文献
13.
电动汽车动力锂电池内部荷电状态估计是电池管理系统状态估计模块的核心,其无法通过仪器直接测量,仅能通过对电池外部电流、电压等参数进行测量并由此估计。准确的荷电状态估计对电池的寿命、容量和安全性管理至关重要。本文综述了用于电动汽车动力锂电池荷电状态估算的主要方法,根据算法差异将其分为传统的基于传感器测量的开路电压法、电流积分法和阻抗法,基于数据驱动的机器学习类算法以及基于模型的卡尔曼滤波器及粒子滤波器算法与融合类算法。深入介绍了不同估计算法的计算原理并由此分析比较了不同估计算法的计算复杂度、计算精度等特点。总结了现阶段锂离子电池荷电状态估算研究存在的问题,指出其研究趋势和未来发展方向将是更具泛化性和更高精度以及更佳实时性的多融合类估算方法。 相似文献
14.
电池的荷电状态(SOC)表示电池的可用容量,是电池管理系统重要参数之一.以锂离子电池为例,准确的估计可以提高其性能.为了建立锂离子电池的精确计算模型,提出了一种基于增强混沌教与学优化算法(ECTLBO)优化极限学习机(ELM)的SOC估计模型(ECTLBO-ELM).在ECTLBO-ELM模型中,一是利用增强混沌优化策... 相似文献
15.
电动汽车蓄电池荷电状态的卡尔曼滤波估计 总被引:9,自引:0,他引:9
对电动汽车剩余里程的预测需要一个准确的蓄电池荷电状态(SOC)值,但目前任何方法都不能精确地测量蓄电池的剩余电量,以计算电动汽车蓄电池的荷电状态(SOC),在对目前常用的剩余电量计量方法分析的基础上,提出了一种基于电流的测量,然后利用卡尔曼滤波估计递推算法对蓄电池SOC进行实时估计,并在MATLB下进行了仿真。 相似文献
16.
《西安交通大学学报》2017,(10)
针对锂离子电池充放电电压信号(DCV)中存在的噪声信号导致荷电状态(SOC)估计精度降低、波动较大的问题,提出了一种基于离散小波变换(DWT)的降噪扩展卡尔曼滤波(EKF)算法。该算法利用多分辨率分析(MRA)分解携带噪声的DCV信号,通过对比4种阈值硬阈值降噪规则对携带噪声的DCV信号的降噪处理效果,选择Stein无偏风险阈值硬阈值降噪规则调整小波系数,通过含自适应遗忘因子的递推最小二乘法辨识电池模型参数后,利用扩展卡尔曼滤波算法估计SOC。仿真结果表明:使用Stein无偏风险阈值硬阈值降噪规则有效地降低了DCV信号中的噪声信号;所提算法具有较好的鲁棒性,能够有效地提高SOC估计精度,使SOC估计误差范围控制在3%之内。 相似文献
17.
《广西师范大学学报(自然科学版)》2018,(4)
荷电状态(state-of-charge,SOC)是锂离子电池预测和健康管理非常重要的一部分。锂离子电池的SOC无法直接测量,因此本文提出了基于随机森林回归算法的锂离子电池SOC估计的方法。首先构建随机森林回归模型,使用电池电流、电池电压、电池温度作为模型的训练输入,相对应的SOC作为模型的训练输出;然后使用随机森林算法进行模型训练;最后将训练模型应用于电池SOC估计。实验结果表明,随机森林回归算法对锂离子电池荷电状态的预测最大估算误差为0.02,均方根误差为0.003 204,该方法能有效地估算锂离子电池SOC并且有很高的估计精度。该模型研究为未来电池荷电状态估算系统的模型构建提供了参考。 相似文献
18.
针对卡尔曼滤波法在锂离子电池荷电状态(SOC)估计时存在误差较大、收敛较慢等问题,提出了一种双自适应衰减扩展卡尔曼滤波荷电状态估计(DAFEKF)算法。该算法首先设计了针对动力电池的荷电状态估计观测器,利用测得的电流和电压值分别作为观测器的输入和观测值,结合双自适应衰减扩展卡尔曼滤波估计出观测器中的电池荷电状态,在卡尔曼滤波算法的基础上加入时变衰减因子来减弱过去数据对当前滤波值的影响,并自适应地调整卡尔曼算法中过程噪声和测量噪声协方差。利用DAFEKF算法估计出的SOC结果与扩展卡尔曼滤波(EKF)和自适应扩展卡尔曼滤波(AEKF)算法进行了比较,结果表明,DAFEKF方法具有较好的准确性、鲁棒性和收敛性,使SOC估计误差控制在2%以内。 相似文献
19.
20.
《同济大学学报(自然科学版)》2019,(Z1)
提出一种基于电化学阻抗谱(EIS)的电池荷电状态(SOC)估计方法。通过对磷酸铁锂电池在不同SOC以及不同温度下的EIS进行测量,利用高、中、低频全频带信息,从幅值和相位两个角度归纳总结了电池EIS的变化特性。结果表明,特定频率下的电池阻抗相位在温度一定时与电池SOC有较强的线性关系,可作为SOC估计的参数。建立了基于EIS的电池SOC估计算法,初步验证了利用EIS估算电池SOC的可行性。 相似文献