首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对酸碱度在线检测仪稳定性差、维护保养成本高等不足及人工检测严重滞后的问题,结合泡沫浮选工艺机理分析,以在线泡沫视频图像表观特征为辅助变量,采用最小二乘支持向量回归机(Least Squares Support Vector Regression,LSSVR)实现了泡沫浮选矿浆酸碱度的软测量.将不同特性的核函数凸组合以提高模型性能,并采用最近邻山峰聚类算法约简核矩阵,降低计算复杂度,利用偏最小二乘回归提高模型鲁棒性.工业运行数据仿真结果表明,建立的软测量模型能够连续在线检测矿浆的酸碱度,并获得了比标准LSSVR、加权LSSVR及多核LSSVR更高的预测精度,可满足工业要求.  相似文献   

2.
现实数据集通常是呈非线性分布的,虽然很多最小二乘支持向量机算法利用分治策略可以对这一类数据集进行建模,但是由于子模型缺乏鲁棒性,所建的总体模型易受噪声的干扰进而失效。为了对带有噪声的数据集建模,提出了一种基于聚类的鲁棒的最小二乘支持向量机。首先,使用聚类方法将样本分成几个子数据集,每一个子数据集对可以相应地建立一个局部的最小二乘支持向量机来获取对应子数据集的局部动态性。其次,通过在损失函数里加入一个全局正则化因子,使得局部子模型间能够智能地协调,保证建立的全局模型不仅是光滑连续的,同时具有良好的泛化性和鲁棒性。数学和实际例子表明,对于含有噪声的样本集,所提出的方法具有更好的建模效果。  相似文献   

3.
最小二乘支持向量机(LS-SVM)作为一种新颖的人工智能技术,已越来越广泛地运用于各个学科领域。该文阐述了最小二乘支持向量机的主要思想和基本算法;结合统计学习理论和算例分析了模型参数对模型精度、复杂度和计算量等的影响,为模型参数的确定提供了理论参考;还提出了最小二乘支持向量机的一种改进算法,通过工程实例对比了基于改进算法和原算法的最小二乘支持向量机模型的性能。算例表明该改进算法可以有效地提高模型的整体性能,便于模型在工程上推广使用。  相似文献   

4.
基于鲁棒最小二乘支持向量机的聚丙烯熔融指数预报   总被引:2,自引:0,他引:2  
可靠地预报熔融指数在聚丙烯生产过程中至关重要。在最小二乘支持向量机采用的误差平方和惩罚函数可能会导致不稳健的预报值基础上,进一步提出了基于鲁棒最小二乘支持向量机的聚丙烯熔融指数软测量模型。工业实例研究表明该方法拟合精度高、泛化能力强,具有广阔的应用前景。  相似文献   

5.
 利用最小二乘方法和临近支持向量机(PSVM)算法,并结合双胞支持向量机(TSVR),提出了最小二乘双胞支持向量回归机(LSTSVR).作为对照,TSVR需要求解2个二次规划问题,而LSTSVR仅需求解2个线性方程组.最后利用不同的实例验证了所提算法的可行性和有效性.  相似文献   

6.
针对最小二乘支持向量机在利用产生于工业现场的非理想数据集进行建模预测时,稀疏化模型鲁棒性差的问题,提出了一种基于模糊C均值聚类和密度加权的稀疏化方法.首先通过模糊C均值聚类将训练样本划分为若干个子类;然后计算每个子类中各样本的可能贡献度,依次从每个子类中选取具有最大可能贡献度的样本作为支持向量;最后更新每个样本的可能贡献度,继续从各个子集中增选支持向量,直至稀疏化后的模型性能满足要求.仿真结果和磨机负荷实际应用表明,该方法能够兼顾模型在整体样本集和各工况子集上的性能,在实现模型稀疏化的同时,能够显著改善最小二乘支持向量机模型的鲁棒性.  相似文献   

7.
一种鲁棒回归支持向量机及其学习算法   总被引:2,自引:0,他引:2  
为了提高支持向量机的泛化能力,给出了一个鲁棒损失函数,利用它建立了鲁棒支持向量机,并利用对偶原理推导出其对偶优化问题的形式,在此基础上设计了局部梯度算法,在这种算法中每次迭代只改变两个优化变量的值。随后分析了算法的收敛性条件,给出了学习步长的选择依据,最后用一个仿真实例来说明所提出的支持向量机的学习性能,比标准支持向量机具有更好的鲁棒性。  相似文献   

8.
为了解决传统最小二乘支持向量回归机(LS-SVR)对训练样本量要求过高的问题,提出了基于梯度信息的支持向量回归机(GE-LS-SVR)模型.通过修改目标函数及约束条件,将梯度信息引入模型的构建中,重新构造了决策函数.采用了三个基准函数对模型进行了验证,并用三个常用度量准则对实验结果进行了比较.结果表明提出的模型能在较少样本的情况下达到较为理想的回归精度.  相似文献   

9.
针对最小二乘支持向量机(LS-SVM)在进行回归预测时存在的稀疏性缺陷问题,采用固定尺度最小二乘支持向量机,即固定支持向量数量进行改进。仿真结果表明:固定尺度最小二乘支持向量机在训练各种样本数据集时,有效地避开了LS-SVM中的稀疏性问题,且训练速度快,同时具有良好的预测精度。  相似文献   

10.
一种改进的最小二乘支持向量机算法   总被引:1,自引:0,他引:1  
最小二乘支持向量机是标准支持向量机的一种扩展,它是支持向量机在二次损失函数下的一种形式.它用等式约束代替不等式约束,求解过程变为解一组等式方程,避免了求解耗时的二次规划问题,但同时也丧失了标准支持向量机的稀疏性,影响了二次学习的效率.针对上述问题,本文提出了一种改进的最小二乘支持向量机增量学习方法.改进的最小二乘支持向量机算法采用自适应剪枝方法对解进行稀疏,根据每次训练得到的分类器性能来设定剪枝阚值和样本增量的大小,如果得到的分类器性能好,剪枝阈值和样本增量就大,反之,剪枝阚值和样本增量就小,从而提高了最小二乘支持向量机训练效率,解决了稀疏性问题.最后,仿真实验表明该算法方案可行.  相似文献   

11.
王快妮  倪科社  丁小帅 《科技信息》2010,(18):I0115-I0115,I0117
最小二乘支持向量机作为支持向量机的扩展,将支持向量机求解二次规划问题转化线性方程组,具有结构简单、易于求解、待定参数少的特点,可大大加快建模速度。本文将最小二乘支持向量机模型应用于上证180指数和香港恒生指数收盘价的预测。实验结果表明,该模型具有学习速度快,预测精度较高的优点,适用于股指预测。  相似文献   

12.
基于最小二乘支持向量机回归的基坑变形预测   总被引:1,自引:0,他引:1  
将最小二乘支持向量机回归用于基坑变形预测.根据基坑位移的实测时间序列资料,应用最小二乘支持向量机回归建立了基坑位移与时间的关系模型.研究结果表明,最小二乘支持向量机回归用于基坑变形预测,具有较高的预测精度.与通常采用的BP神经网络相比,该方法具有预测误差小、计算快速、所需数据少等优点.  相似文献   

13.
在实际的通信环境中,信号方向向量偏差使得线性约束最小二乘恒模算法的性能急剧下降.针对这一问题,提出了鲁棒约束最小二乘恒模算法.该算法通过在代价函数中增加一个方向向量存在偏差的模值约束条件来提高算法的鲁棒性,并在此约束条件下推导出权重向量的递推公式.另外,采用递推算法计算逆矩阵,大大地降低了计算复杂度.所提算法对信号方向向量偏差具有较强的鲁棒性,从而保证了阵列输出的信干噪比接近最优值.仿真实验结果表明,与传统算法相比,所提鲁棒约束最小二乘恒模算法具有更好的性能,且能适应实际复杂的通信环境.  相似文献   

14.
为增强最小二乘支持向量机(LS-SVM)回归建模的稀疏性、鲁棒性和实时性,在加权LS-SVM的基础上,提出了基于矢量基学习的自适应迭代回归算法。在训练过程中,该算法通过矢量基学习和自适应迭代相结合的方法得到1个小的支持向量集,同时采用加权方法确定权值以减小训练样本中非高斯噪声的影响。回归学习和动态系统辩识的仿真结果表明:在回归建模精度相似的情况下,该算法确定的支持向量为全部学习样本的4.9%~8.9%,训练时间为标准LS-SVM的0.011%~0.383%;由于能够鲁棒跟踪时变非线性系统的动态特性,适合在线实时训练;可进一步用于非线性系统的建模和实时控制研究。  相似文献   

15.
支持向量机是近年来机器学习领域出现的新的分类方法。在介绍支持向量机的基本原理及基于最小二乘支持向量机算法的基础上,结合一个实例阐述了最小二乘支持向量机在预测方面的应用,通过MATLAB仿真实验,结果表明该方法是有效的。  相似文献   

16.
研究了加权最小二乘支持向量机与最小二乘法的关系.证明了用加权最小二乘支持向量机作函数估计与在特征空间中用最小二乘法得到的解是一致的.加权最小二乘支持向量机选择核相当于最小二乘法选择基函数组.由此提出了采用加权最小二乘支持向量机解决最小二乘法问题的思想,保证解具有良好的推广性、鲁棒性与稀疏性.  相似文献   

17.
小波网络具有小波的多尺度特性和神经网络的自学习功能,在回归估计中得到广泛的应用,但其性能受到样本中粗差的严重影响.虽然以M-估计作为目标函数可以解决这个问题,但由于其对应的影响函数由残差绝对值决定,因此如何选择初始参数值成为一个关键问题.为此,提出回归函数的小波支持向量机鲁棒估计方法(小波支持向量回归,WSVR,Wavelet Support Vector Regression).该方法中首先提出并证明了一种新的小波支持向量机(WSVM,Wavelet Support Vector Machine),用于确定初始参数值方法,这种方法能够确定合理的网络结构和合适的初始参数值,保证含有粗差的样本点的残差绝对值较大;然后使用一种构造的M-估计作为目标函数,并提出了自适应确定阈值方法.仿真结果表明,使用这种方法得到的回归模型不仅具有良好的多尺度逼近特性,而且有较好的鲁棒性和较高的推广性能,具有较高的理论和应用价值.  相似文献   

18.
提出基于特征向量选择(feature vector selection,FVS)的稀疏最小二乘支持向量机(sparse least squares support vector machine,SLS-SVM)模型,解决最小二乘支持向量机(least squares support vector machine,LS-SVM)稀疏化问题。采用FVS在特征空间构建特征向量子集,对训练样本进行稀疏线性重构;将稀疏化的特征向量作为支持向量,从而实现对LS-SVM稀疏化建模。将SLS-SVM模型进行弓网系统的仿真对比实验,结果表明SLS-SVM模型在取得高预报精度的同时,可实现支持向量的高度稀疏化,从而加快模型预报速度。  相似文献   

19.
基于改进克隆选择算法的最小二乘支持向量机   总被引:1,自引:0,他引:1  
针对最小二乘支持向量机的参数选取问题,引入了克隆选择算法,提出了一种基于改进克隆选择算法的最小二乘支持向量机。同时根据最小二乘支持向量机的学习能力和泛化能力,在克隆选择算法的目标函数中加入两者的动态调节机制,这样改进的克隆选择算法在寻优过程中能够准确、快速地搜索到最小二乘支持向量机的最优参数。将本文模型用于乙烯裂解炉裂解深度值的学习和预测,经仿真实验表明:该预测模型的训练速度快,预测精度高。  相似文献   

20.
基于经典的孪生有界支持向量机(TBSVM),构造了一个既简单又快速的基于最小二乘的孪生有界支持向量机(LSTBSVM)的二分类算法.该算法简单地将TBSVM模型中的两个目标函数中不等式约束问题修改为等式约束,问题最终归结为求解两个最小二乘问题,以至于两个最优不平行平面可通过求解一对线性方程组获取.与TBSVM相比,LSTBSVM具有更低的时间复杂度,以至于可以有效地处理大数据集.通过理论分析和在传统的UCI和人工数据集上的实验显示,LSTBSVM不仅具较快的计算速度,且能得到与TBSVM相当的性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号