首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
利用电涡流缓速器调节车辆制动稳定性   总被引:1,自引:0,他引:1  
利用电涡流缓速器制动力矩可控的特点,将电涡流缓速器的力矩输出进行适当的控制并施加在后轮上,与后轮制动器制动力共同形成了复合制动力.建立了车辆制动力的调节模型,理论上确定了电涡流缓速器的通电电流是车辆前轮制动器制动力的函数.实车模拟结果表明,后轮的地面制动力随前轮制动器制动力的变化关系,能较好地贴近车辆的理想制动力分配曲线,车辆较好地利用了地面的附着能力,改善了车辆的制动稳定性.  相似文献   

2.
微型电动轿车制动能量回收及控制策略的研究   总被引:1,自引:0,他引:1  
分析了电动汽车制动能量转换和回收的制约因素,以某前驱动微型电动轿车为研究对象,在传统汽车制动理论的基础上,提出了电机再生制动力和摩擦制动力以及整车前、后轮制动力的联合控制策略;基于Matlab/Simulink和Advisor软件平台进行了系统建模和典型循环工况下的仿真,结果表明,该联合控制策略能够实现安全制动条件下的制动能量回收,且能量回收率达14.13%。  相似文献   

3.
为了研究特大型电动轮矿用自卸车下坡联合制动时的制动特性,分析联合制动时电阻栅能耗制动及液压多片湿盘式制动器制动功率的分配,以湘电重装满载整车重量达520t的自卸车为研究对象,建立了自卸车电阻栅能耗制动及液压多片湿盘式制动器联合制动系统动力学模型,利用Mtlab/simulink对该自卸车在不同下坡坡道上的紧急联合制动进行了数值分析计算,获得制动特性曲线.结果表明:初速度为30 km/h时,在不高于10%的坡度下紧急制动距离不超过21 m;平均比制动力在不同坡道基本保持不变,最高值为0.35左右;后轮比制动力大于前轮比制动力,侧滑、跑偏的可能性大于转向失控的可能性;当满载重心向后轴移动时,平均比制动力保持不变,前后轮比制动力差距减小,可有效利用地面粘着力;电阻栅能耗制动与液压多片湿盘式制动器的平均制动功率之比约为2:3.研究表明该联合制动系统可有效减轻主制动器负荷,提高制动效能,延长主制动器使用寿命.  相似文献   

4.
通过建立半挂汽车列车制动时的力学模型,讨论了半挂汽车列车制动过程各轴载荷的变化规律,得出了半挂汽车列车较理想的制动器制动力分配曲线的参数方程.在此基础上,分析了具有固定分配比值的半挂汽车列车制动时的利用附着系数以及怎样利用各轴的利用附着系数来优化选择半挂汽车列车制动器制动力的分配系数.  相似文献   

5.
矿用汽车制动时方向稳定性及制动力分配   总被引:1,自引:0,他引:1  
分析矿用汽车制动时,前轮抑死或后轮抑殆以及前后轮同步抱死三种工况下,车辆的转向能力和稳定性;并在此基础上考虑附着系数的作用和阻力的作用后,系统地定量讨论了矿用汽车制动力的分配。  相似文献   

6.
程鹏 《科技信息》2011,(2):365-367
本文分析了汽车弯道制动工况下的受力情况,并利用ADAMS/CAR模块建立了整车模型。对整车弯道制动工况进行了动力学仿真,分析了制动强度、前后制动力分配系数及质心位置等参数对车辆稳定性的影响程度。最后得到结论:分配到前轮的制动力应该比后轮大一些;车辆的质心不能太高;同时最好采用发动机前置,以使质心适当靠前。  相似文献   

7.
基于减速度参数的电子制动力分配控制算法   总被引:1,自引:0,他引:1  
基于两轮车辆模型分析了利用路面峰值附着系数的电子制动力分配系统(EBD)的工作原理,研究了路面附着系数与车轮峰值地面制动力的关系,以后轮最大峰值地面制动力为目标确定了制动力的分配系数.讨论了前轮或后轮达到峰值制动力时车辆减速度实际值与目标值的差异,提出了以车辆减速度和车轮减速度为参数的EBD控制算法,开发了相应的EBD控制流程.在自主研发的防抱制动系统(ABS)中进行了EBD功能集成测试,结果表明:前后轮同时达到峰值附着系数φp的制动力分配曲线与前后轮同时抱死的I曲线一致.一定载荷下,后轮制动力存在最大值,且存在较宽范围的φp,对应最大制动力变化不大,EBD能在ABS作用前有效调节后轮制动力.  相似文献   

8.
在传热学理论基础上,结合汽车鼓式制动器的结构和工作原理,建立了鼓式制动器热平衡关系式,分析了影响对流换热系数的主要因素。依据对流换热过程的3个相似准则,进行鼓式制动器恒定制动力持续制动实验,测试不同车轮转速条件下的温升过程,并利用最小二乘法拟合曲线,得到汽车鼓式制动器对流换热系数的求解公式。结果表明:实验法求解鼓式制动器的对流换热系数是可行的,运用量纲分析法和相似理论指导实验,能够有效简化实验程序,减少实验工作量。  相似文献   

9.
电动车最大化能量回收制动力分配策略研究   总被引:8,自引:0,他引:8  
为了提高电动车的回收能量,通过对汽车制动动力学和相关法规的分析,建立了电机模型和电动车动力传动系模型,从能量回收最大化角度出发,提出了一种前、后轮制动力根据电机制动转矩进行分配的策略,并采用MATLAB/Simulink软件进行了仿真分析.研究结果表明:采用该策略,电动车可满足制动稳定性和法规的要求;与理想制动力分配策略相比,能充分利用电机制动转矩.仿真结果表明,对日本1015道路循环,电机的发电能量提高了56.1%,对其他各种道路循环,电机的发电能量均有较大幅度提高.  相似文献   

10.
为使汽车在不同工况及路面时都能使前后轴制动力接近理想的制动力分配曲线,提高汽车运行的安全性,提出了用数字高速开关阀及单片机组成制动力电液比例分配装置,实现前后制动分泵的压力按比例进行分配,装置可根据汽车的载重量,确定与之相应的标准制动分配曲线,实施制动时,由压力传感器检测制动器出口压力,由PWM信号控制的两个高速开关阀,适时调节前、后制动分泵中的压力,跟踪标准制动力分配曲线,理论分析及台架试验表明,文中提出的方法可行,基本上能实现四轮同时制动而不抱死,有工业应用前景。  相似文献   

11.
采用传统方法对急刹车情况下汽车防抱死制动性能进行研究时,通常将车轮转速作为影响因子确定车轮转速阈值,效率不高。提出一种新的汽车防抱死制动性能影响因子,通过对制动器摩擦力矩所需的力、地面制动力、地面附着力等进行分析,完成急刹车情况下汽车防抱死制动过程中受力分析。通过对急刹车情况下汽车防抱死制动过程中车轮滑动程度、滑移率和轮胎侧偏角等进行分析,完成汽车防抱死制动性能影响因子分析过程。依据汽车横向稳定性、控制误差、轮胎特性变化,以及车辆运动状态和路面条件等,对汽车防抱死制动过程中滑移率和轮胎侧偏角之间的关系进行描述,实现滑移率的实时控制,保证制动过程中的附着力,提高汽车防抱死制动性能。实验结果表明,依据实际情况实时改变滑移率,保证高附着系数,对汽车防抱死制动性能有积极的影响。  相似文献   

12.
解决制动初期的制动力分配难题对汽车安全性具有重要意义。在对汽车制动特性进行分析的基础上,提出含有控制级和协调级的电子制动力分配(EBD)分级控制方法,设计了基于模糊推理的各轮预分配制动力控制策略,并根据各轮参考滑移率对各轮预分配制动力进行调整。利用汽车电子控制单元的嵌入式系统开发平台,在不同条件下进行了汽车EBD与ABS硬件在回路仿真试验试验结果表明,EBD分级控制在制动初期ABS起作用前,能够有效调整汽车制动力分配,提高了整车制动的安全性。  相似文献   

13.
针对四轮独立驱动电动车在不同制动强度下的制动效能及制动稳定性,提出一种兼顾电池特性、电机特性和制动稳定性的四轮独立驱动电动车制动力分配策略。利用MATLAB和AVL-CRUISE建立控制模型及整车模型进行联合仿真;并进行实车试验。结果表明:制动力分配策略可有效地分配电机制动力和机械制动力;并满足制动效能、制动稳定性,且与I曲线的制动力分配策略相比,能够在低制动强度下多回收近12%的制动能量。  相似文献   

14.
为了改善制动防抱系统的制动性能和制动踏板感觉,提出了一种基于相对滑移率和相对车轮加速度的汽车防抱自适应模糊控制方法,利用dSPACE快速控制原型系统将该方法在实车控制中予以实现,并进行了实车试验。试验结果表明,该控制方法能够达到理想的控制效果,轮速和轮缸制动压力波动幅度比传统控制方法(逻辑门限控制方法)减小了50%,且没有出现制动抱死现象。  相似文献   

15.
纯电动汽车电液复合再生制动控制   总被引:1,自引:0,他引:1  
针对纯电动汽车电液复合再生制动过程机电制动力的动态分配问题,通过对制动动力学和ECE R13-H制动法规的分析,从理论上确定纯电动汽车电液复合再生制动的安全运行范围。在安全制动范围内,开发了以最大限度回收能量为目标,达到需求制动强度而前、后轴又不抱死的再生制动控制流程,生成机电制动力分配矩阵。以制动强度分别为0.2,0.3,0.4,0.5和0.6,初始车速为16.67 m/s,结合ECE-EUDC道路循环,构建新的仿真循环,将车辆参数、制动力分配矩阵、道路循环嵌入ADVISOR2002软件。研究结果表明:仿真运行1个道路循环后,电池荷电状态SOC(State of charge)相对原策略有较明显的提高,提高幅度达4.5%,较好地回收了制动能量,更重要的是保证了制动安全,表明开发的控制策略是有效的。  相似文献   

16.
文章建立了具有感载比例阀的轻型客车制动系统分析模型,对轻型客车制动系统的制动性能、制动踏板力、制动稳定性及其前后制动力的匹配进行了详细地分析;以HFC6500A1轻型客车为例进行了理论计算和实验验证。理论计算和实验结果基本吻合,证明了所建模型的正确性。  相似文献   

17.
针对线控制动系统单轮制动失效时车辆制动稳定性控制问题,提出了协同线控转向和线控制动系统的制动力优化分配控制策略.为了最大程度满足驾驶员的制动期望,采用二次规划方法初始分配剩余三轮制动力;为防止车辆因制动力重构产生横摆或跑偏,采用滑模控制方法设计前轮转向控制器;考虑前轮转向对轮胎纵向力的影响,建立基于魔术公式的轮胎侧向力数学模型,基于二次规划方法实时优化轮胎在侧偏纵滑工况下的制动力.联合Simulink和Carsim进行了仿真实验分析,结果显示车辆的横摆角速度快速收敛为0,侧向跑偏距离均小于0.1 m.结果验证了本文提出的制动力优化分配控制策略在不同的制动工况下均能提高单轮制动失效车辆的制动稳定性.  相似文献   

18.
分析汽车制动过程及制动过程中角速度、角加速度的变化规律 ,建立车轮动力学模型 根据产生最大制动力的车轮角加速度即临界角加速度及其变化规律 ,采用角加速度门限值作为控制参数 ,并以EQ1 40型汽车气制动系统为基础 ,建立电子防抱制动实验系统 通过转鼓实验台的多次实验 ,效果明显 ,所得出一些有益的结论和经验亦将有助于更深一步的研究  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号